1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
@cindex differential equations, initial value problems
@cindex initial value problems, differential equations
@cindex ordinary differential equations, initial value problem
@cindex ODEs, initial value problems
This chapter describes functions for solving ordinary differential
equation (ODE) initial value problems. The library provides a variety
of low-level methods, such as Runge-Kutta and Bulirsch-Stoer routines,
and higher-level components for adaptive step-size control. The
components can be combined by the user to achieve the desired solution,
with full access to any intermediate steps.
These functions are declared in the header file @file{gsl_odeiv.h}.
@menu
* Defining the ODE System::
* Stepping Functions::
* Adaptive Step-size Control::
* Evolution::
* ODE Example programs::
* ODE References and Further Reading::
@end menu
@node Defining the ODE System
@section Defining the ODE System
The routines solve the general @math{n}-dimensional first-order system,
@tex
\beforedisplay
$$
{dy_i(t) \over dt} = f_i (t, y_1(t), \dots y_n(t))
$$
\afterdisplay
@end tex
@ifinfo
@example
dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t))
@end example
@end ifinfo
@noindent
for @math{i = 1, \dots, n}. The stepping functions rely on the vector
of derivatives @math{f_i} and the Jacobian matrix,
@c{$J_{ij} = \partial f_i(t, y(t)) / \partial y_j$}
@math{J_@{ij@} = df_i(t,y(t)) / dy_j}.
A system of equations is defined using the @code{gsl_odeiv_system}
datatype.
@deftp {Data Type} gsl_odeiv_system
This data type defines a general ODE system with arbitrary parameters.
@table @code
@item int (* function) (double t, const double y[], double dydt[], void * params)
This function should store the vector elements
@c{$f_i(t,y,\hbox{\it params})$}
@math{f_i(t,y,params)} in the array @var{dydt},
for arguments (@var{t},@var{y}) and parameters @var{params}.
The function should return @code{GSL_SUCCESS} if the calculation
was completed successfully. Any other return value indicates
an error.
@item int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);
@cindex Jacobian matrix, ODEs
This function should store the vector of derivative elements
@c{$\partial f_i(t,y,params) / \partial t$}
@math{df_i(t,y,params)/dt} in the array @var{dfdt} and the
Jacobian matrix @c{$J_{ij}$}
@math{J_@{ij@}} in the array
@var{dfdy}, regarded as a row-ordered matrix @code{J(i,j) = dfdy[i * dimension + j]}
where @code{dimension} is the dimension of the system.
The function should return @code{GSL_SUCCESS} if the calculation
was completed successfully. Any other return value indicates
an error.
Some of the simpler solver algorithms do not make use of the Jacobian
matrix, so it is not always strictly necessary to provide it (the
@code{jacobian} element of the struct can be replaced by a null pointer
for those algorithms). However, it is useful to provide the Jacobian to allow
the solver algorithms to be interchanged---the best algorithms make use
of the Jacobian.
@item size_t dimension;
This is the dimension of the system of equations.
@item void * params
This is a pointer to the arbitrary parameters of the system.
@end table
@end deftp
@node Stepping Functions
@section Stepping Functions
The lowest level components are the @dfn{stepping functions} which
advance a solution from time @math{t} to @math{t+h} for a fixed
step-size @math{h} and estimate the resulting local error.
@deftypefun {gsl_odeiv_step *} gsl_odeiv_step_alloc (const gsl_odeiv_step_type * @var{T}, size_t @var{dim})
@tpindex gsl_odeiv_step
@tpindex gsl_odeiv_step_type
This function returns a pointer to a newly allocated instance of a
stepping function of type @var{T} for a system of @var{dim} dimensions.
@end deftypefun
@deftypefun int gsl_odeiv_step_reset (gsl_odeiv_step * @var{s})
This function resets the stepping function @var{s}. It should be used
whenever the next use of @var{s} will not be a continuation of a
previous step.
@end deftypefun
@deftypefun void gsl_odeiv_step_free (gsl_odeiv_step * @var{s})
This function frees all the memory associated with the stepping function
@var{s}.
@end deftypefun
@deftypefun {const char *} gsl_odeiv_step_name (const gsl_odeiv_step * @var{s})
This function returns a pointer to the name of the stepping function.
For example,
@example
printf ("step method is '%s'\n",
gsl_odeiv_step_name (s));
@end example
@noindent
would print something like @code{step method is 'rkf45'}.
@end deftypefun
@deftypefun {unsigned int} gsl_odeiv_step_order (const gsl_odeiv_step * @var{s})
This function returns the order of the stepping function on the previous
step. This order can vary if the stepping function itself is adaptive.
@end deftypefun
@deftypefun int gsl_odeiv_step_apply (gsl_odeiv_step * @var{s}, double @var{t}, double @var{h}, double @var{y}[], double @var{yerr}[], const double @var{dydt_in}[], double @var{dydt_out}[], const gsl_odeiv_system * @var{dydt})
This function applies the stepping function @var{s} to the system of
equations defined by @var{dydt}, using the step size @var{h} to advance
the system from time @var{t} and state @var{y} to time @var{t}+@var{h}.
The new state of the system is stored in @var{y} on output, with an
estimate of the absolute error in each component stored in @var{yerr}.
If the argument @var{dydt_in} is not null it should point an array
containing the derivatives for the system at time @var{t} on input. This
is optional as the derivatives will be computed internally if they are
not provided, but allows the reuse of existing derivative information.
On output the new derivatives of the system at time @var{t}+@var{h} will
be stored in @var{dydt_out} if it is not null.
If the user-supplied functions defined in the system @var{dydt} return a
status other than @code{GSL_SUCCESS} the step will be aborted. In this
case, the elements of @var{y} will be restored to their pre-step values
and the error code from the user-supplied function will be returned.
The step-size @var{h} will be set to the step-size which caused the error.
If the function is called again with a smaller step-size, e.g. @math{@var{h}/10},
it should be possible to get closer to any singularity.
To distinguish between error codes from the user-supplied functions and
those from @code{gsl_odeiv_step_apply} itself, any user-defined return
values should be distinct from the standard GSL error codes.
@end deftypefun
The following algorithms are available,
@deffn {Step Type} gsl_odeiv_step_rk2
@cindex RK2, Runge-Kutta method
@cindex Runge-Kutta methods, ordinary differential equations
Embedded Runge-Kutta (2, 3) method.
@end deffn
@deffn {Step Type} gsl_odeiv_step_rk4
@cindex RK4, Runge-Kutta method
4th order (classical) Runge-Kutta. The error estimate is obtained by
halving the step-size. For more efficient estimate of the error, use the
Runge-Kutta-Fehlberg method described below.
@end deffn
@deffn {Step Type} gsl_odeiv_step_rkf45
@cindex Fehlberg method, differential equations
@cindex RKF45, Runge-Kutta-Fehlberg method
Embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good
general-purpose integrator.
@end deffn
@deffn {Step Type} gsl_odeiv_step_rkck
@cindex Runge-Kutta Cash-Karp method
@cindex Cash-Karp, Runge-Kutta method
Embedded Runge-Kutta Cash-Karp (4, 5) method.
@end deffn
@deffn {Step Type} gsl_odeiv_step_rk8pd
@cindex Runge-Kutta Prince-Dormand method
@cindex Prince-Dormand, Runge-Kutta method
Embedded Runge-Kutta Prince-Dormand (8,9) method.
@end deffn
@deffn {Step Type} gsl_odeiv_step_rk2imp
Implicit 2nd order Runge-Kutta at Gaussian points.
@end deffn
@deffn {Step Type} gsl_odeiv_step_rk4imp
Implicit 4th order Runge-Kutta at Gaussian points.
@end deffn
@deffn {Step Type} gsl_odeiv_step_bsimp
@cindex Bulirsch-Stoer method
@cindex Bader and Deuflhard, Bulirsch-Stoer method.
@cindex Deuflhard and Bader, Bulirsch-Stoer method.
Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm
requires the Jacobian.
@end deffn
@deffn {Step Type} gsl_odeiv_step_gear1
@cindex Gear method, differential equations
M=1 implicit Gear method.
@end deffn
@deffn {Step Type} gsl_odeiv_step_gear2
M=2 implicit Gear method.
@end deffn
@node Adaptive Step-size Control
@section Adaptive Step-size Control
@cindex Adaptive step-size control, differential equations
The control function examines the proposed change to the solution
produced by a stepping function and attempts to determine the optimal
step-size for a user-specified level of error.
@deftypefun {gsl_odeiv_control *} gsl_odeiv_control_standard_new (double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt})
@tpindex gsl_odeiv_control
@tpindex gsl_odeiv_control_type
The standard control object is a four parameter heuristic based on
absolute and relative errors @var{eps_abs} and @var{eps_rel}, and
scaling factors @var{a_y} and @var{a_dydt} for the system state
@math{y(t)} and derivatives @math{y'(t)} respectively.
The step-size adjustment procedure for this method begins by computing
the desired error level @math{D_i} for each component,
@tex
\beforedisplay
$$
D_i = \epsilon_{abs} + \epsilon_{rel} * (a_{y} |y_i| + a_{dydt} h |y'_i|)
$$
\afterdisplay
@end tex
@ifinfo
@example
D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y'_i|)
@end example
@end ifinfo
@noindent
and comparing it with the observed error @math{E_i = |yerr_i|}. If the
observed error @var{E} exceeds the desired error level @var{D} by more
than 10% for any component then the method reduces the step-size by an
appropriate factor,
@tex
\beforedisplay
$$
h_{new} = h_{old} * S * (E/D)^{-1/q}
$$
\afterdisplay
@end tex
@ifinfo
@example
h_new = h_old * S * (E/D)^(-1/q)
@end example
@end ifinfo
@noindent
where @math{q} is the consistency order of the method (e.g. @math{q=4} for
4(5) embedded RK), and @math{S} is a safety factor of 0.9. The ratio
@math{E/D} is taken to be the maximum of the ratios
@math{E_i/D_i}.
If the observed error @math{E} is less than 50% of the desired error
level @var{D} for the maximum ratio @math{E_i/D_i} then the algorithm
takes the opportunity to increase the step-size to bring the error in
line with the desired level,
@tex
\beforedisplay
$$
h_{new} = h_{old} * S * (E/D)^{-1/(q+1)}
$$
\afterdisplay
@end tex
@ifinfo
@example
h_new = h_old * S * (E/D)^(-1/(q+1))
@end example
@end ifinfo
@noindent
This encompasses all the standard error scaling methods. To avoid
uncontrolled changes in the stepsize, the overall scaling factor is
limited to the range @math{1/5} to 5.
@end deftypefun
@deftypefun {gsl_odeiv_control *} gsl_odeiv_control_y_new (double @var{eps_abs}, double @var{eps_rel})
This function creates a new control object which will keep the local
error on each step within an absolute error of @var{eps_abs} and
relative error of @var{eps_rel} with respect to the solution @math{y_i(t)}.
This is equivalent to the standard control object with @var{a_y}=1 and
@var{a_dydt}=0.
@end deftypefun
@deftypefun {gsl_odeiv_control *} gsl_odeiv_control_yp_new (double @var{eps_abs}, double @var{eps_rel})
This function creates a new control object which will keep the local
error on each step within an absolute error of @var{eps_abs} and
relative error of @var{eps_rel} with respect to the derivatives of the
solution @math{y'_i(t)}. This is equivalent to the standard control
object with @var{a_y}=0 and @var{a_dydt}=1.
@end deftypefun
@deftypefun {gsl_odeiv_control *} gsl_odeiv_control_scaled_new (double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt}, const double @var{scale_abs}[], size_t @var{dim})
This function creates a new control object which uses the same algorithm
as @code{gsl_odeiv_control_standard_new} but with an absolute error
which is scaled for each component by the array @var{scale_abs}.
The formula for @math{D_i} for this control object is,
@tex
\beforedisplay
$$
D_i = \epsilon_{abs} s_i + \epsilon_{rel} * (a_{y} |y_i| + a_{dydt} h |y'_i|)
$$
\afterdisplay
@end tex
@ifinfo
@example
D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y'_i|)
@end example
@end ifinfo
@noindent
where @math{s_i} is the @math{i}-th component of the array @var{scale_abs}.
The same error control heuristic is used by the Matlab @sc{ode} suite.
@end deftypefun
@deftypefun {gsl_odeiv_control *} gsl_odeiv_control_alloc (const gsl_odeiv_control_type * @var{T})
This function returns a pointer to a newly allocated instance of a
control function of type @var{T}. This function is only needed for
defining new types of control functions. For most purposes the standard
control functions described above should be sufficient.
@end deftypefun
@deftypefun int gsl_odeiv_control_init (gsl_odeiv_control * @var{c}, double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt})
This function initializes the control function @var{c} with the
parameters @var{eps_abs} (absolute error), @var{eps_rel} (relative
error), @var{a_y} (scaling factor for y) and @var{a_dydt} (scaling
factor for derivatives).
@end deftypefun
@deftypefun void gsl_odeiv_control_free (gsl_odeiv_control * @var{c})
This function frees all the memory associated with the control function
@var{c}.
@end deftypefun
@deftypefun int gsl_odeiv_control_hadjust (gsl_odeiv_control * @var{c}, gsl_odeiv_step * @var{s}, const double @var{y}[], const double @var{yerr}[], const double @var{dydt}[], double * @var{h})
This function adjusts the step-size @var{h} using the control function
@var{c}, and the current values of @var{y}, @var{yerr} and @var{dydt}.
The stepping function @var{step} is also needed to determine the order
of the method. If the error in the y-values @var{yerr} is found to be
too large then the step-size @var{h} is reduced and the function returns
@code{GSL_ODEIV_HADJ_DEC}. If the error is sufficiently small then
@var{h} may be increased and @code{GSL_ODEIV_HADJ_INC} is returned. The
function returns @code{GSL_ODEIV_HADJ_NIL} if the step-size is
unchanged. The goal of the function is to estimate the largest
step-size which satisfies the user-specified accuracy requirements for
the current point.
@end deftypefun
@deftypefun {const char *} gsl_odeiv_control_name (const gsl_odeiv_control * @var{c})
This function returns a pointer to the name of the control function.
For example,
@example
printf ("control method is '%s'\n",
gsl_odeiv_control_name (c));
@end example
@noindent
would print something like @code{control method is 'standard'}
@end deftypefun
@node Evolution
@section Evolution
The highest level of the system is the evolution function which combines
the results of a stepping function and control function to reliably
advance the solution forward over an interval @math{(t_0, t_1)}. If the
control function signals that the step-size should be decreased the
evolution function backs out of the current step and tries the proposed
smaller step-size. This process is continued until an acceptable
step-size is found.
@deftypefun {gsl_odeiv_evolve *} gsl_odeiv_evolve_alloc (size_t @var{dim})
@tpindex gsl_odeiv_evolve
This function returns a pointer to a newly allocated instance of an
evolution function for a system of @var{dim} dimensions.
@end deftypefun
@deftypefun int gsl_odeiv_evolve_apply (gsl_odeiv_evolve * @var{e}, gsl_odeiv_control * @var{con}, gsl_odeiv_step * @var{step}, const gsl_odeiv_system * @var{dydt}, double * @var{t}, double @var{t1}, double * @var{h}, double @var{y}[])
This function advances the system (@var{e}, @var{dydt}) from time
@var{t} and position @var{y} using the stepping function @var{step}.
The new time and position are stored in @var{t} and @var{y} on output.
The initial step-size is taken as @var{h}, but this will be modified
using the control function @var{c} to achieve the appropriate error
bound if necessary. The routine may make several calls to @var{step} in
order to determine the optimum step-size. An estimate of
the local error for the step can be obtained from the components of the array @code{@var{e}->yerr[]}.
If the step-size has been changed the value of @var{h} will be modified on output.
The maximum time @var{t1} is guaranteed not to be exceeded by the time-step. On the
final time-step the value of @var{t} will be set to @var{t1} exactly.
If the user-supplied functions defined in the system @var{dydt} return a
status other than @code{GSL_SUCCESS} the step will be aborted. In this
case, @var{t} and @var{y} will be restored to their pre-step values
and the error code from the user-supplied function will be returned. To
distinguish between error codes from the user-supplied functions and
those from @code{gsl_odeiv_evolve_apply} itself, any user-defined return
values should be distinct from the standard GSL error codes.
@end deftypefun
@deftypefun int gsl_odeiv_evolve_reset (gsl_odeiv_evolve * @var{e})
This function resets the evolution function @var{e}. It should be used
whenever the next use of @var{e} will not be a continuation of a
previous step.
@end deftypefun
@deftypefun void gsl_odeiv_evolve_free (gsl_odeiv_evolve * @var{e})
This function frees all the memory associated with the evolution function
@var{e}.
@end deftypefun
@cindex discontinuities, in ODE systems
Where a system has discontinuous changes in the derivatives at known
times it is advisable to evolve the system between each discontinuity
in sequence. For example, if a step-change in an external driving
force occurs at times @math{t_a, t_b, t_c, \dots} then evolving over
the ranges @math{(t_0,t_a)}, @math{(t_a,t_b)}, @dots{},
@math{(t_c,t_1)} is more efficient than using the single range
@math{(t_0,t_1)}.
Evolving the system directly through a discontinuity with a strict
tolerance may result in extremely small steps being taken at the edge
of the discontinuity (e.g. down to the limit of machine precision).
In this case it may be necessary to impose a minimum step size
@code{hmin} suitable for the problem:
@example
while (t < t1)
@{
gsl_odeiv_evolve_apply (e, c, s, &sys, &t, t1, &h, y);
if (h < hmin) @{ h = hmin; @} ;
@}
@end example
The value of @var{h} returned by @code{gsl_odeiv_evolve_apply} is
always a suggested value and can be modified whenever needed.
@node ODE Example programs
@section Examples
@cindex Van der Pol oscillator, example
The following program solves the second-order nonlinear Van der Pol
oscillator equation,
@tex
\beforedisplay
$$
x''(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0
$$
\afterdisplay
@end tex
@ifinfo
@example
x''(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0
@end example
@end ifinfo
@noindent
This can be converted into a first order system suitable for use with
the routines described in this chapter by introducing a separate
variable for the velocity, @math{y = x'(t)},
@tex
\beforedisplay
$$
\eqalign{
x' &= y\cr
y' &= -x + \mu y (1-x^2)
}
$$
\afterdisplay
@end tex
@ifinfo
@example
x' = y
y' = -x + \mu y (1-x^2)
@end example
@end ifinfo
@noindent
The program begins by defining functions for these derivatives and
their Jacobian,
@example
@verbatiminclude examples/ode-initval.c
@end example
@noindent
For functions with multiple parameters, the appropriate information
can be passed in through the @var{params} argument using a pointer to
a struct.
The main loop of the program evolves the solution from @math{(y, y') =
(1, 0)} at @math{t=0} to @math{t=100}. The step-size @math{h} is
automatically adjusted by the controller to maintain an absolute
accuracy of @c{$10^{-6}$}
@math{10^@{-6@}} in the function values @var{y}.
@iftex
@sp 1
@center @image{vdp,3.4in}
@center Numerical solution of the Van der Pol oscillator equation
@center using Prince-Dormand 8th order Runge-Kutta.
@end iftex
@noindent
To obtain the values at user-specified positions, rather than those
chosen automatically by the control function, the main loop can be modified
to advance the solution from one chosen point to the next. For example, the
following main loop prints the solution at the points @math{t_i = 0,
1, 2, \dots, 100},
@example
for (i = 1; i <= 100; i++)
@{
double ti = i * t1 / 100.0;
while (t < ti)
@{
gsl_odeiv_evolve_apply (e, c, s,
&sys,
&t, ti, &h,
y);
@}
printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
@}
@end example
@noindent
Note that arbitrary values of @math{t_i} can be used for each stage of
the integration. The equally spaced points in this example are just
used as an illustration.
It is also possible to work with a non-adaptive integrator, using only
the stepping function itself. The following program uses the @code{rk4}
fourth-order Runge-Kutta stepping function with a fixed stepsize of
0.01,
@example
@verbatiminclude examples/odefixed.c
@end example
@noindent
The derivatives must be initialized for the starting point @math{t=0}
before the first step is taken. Subsequent steps use the output
derivatives @var{dydt_out} as inputs to the next step by copying their
values into @var{dydt_in}.
@node ODE References and Further Reading
@section References and Further Reading
Many of the basic Runge-Kutta formulas can be found in the Handbook of
Mathematical Functions,
@itemize @w{}
@item
Abramowitz & Stegun (eds.), @cite{Handbook of Mathematical Functions},
Section 25.5.
@end itemize
@noindent
The implicit Bulirsch-Stoer algorithm @code{bsimp} is described in the
following paper,
@itemize @w{}
@item
G. Bader and P. Deuflhard, ``A Semi-Implicit Mid-Point Rule for Stiff
Systems of Ordinary Differential Equations.'', Numer.@: Math.@: 41, 373--398,
1983.
@end itemize
|