1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
@cindex Legendre polynomials
@cindex Legendre functions
@cindex spherical harmonics
@cindex conical functions
@cindex hyperbolic space
The Legendre Functions and Legendre Polynomials are described in
Abramowitz & Stegun, Chapter 8. These functions are declared in
the header file @file{gsl_sf_legendre.h}.
@menu
* Legendre Polynomials::
* Associated Legendre Polynomials and Spherical Harmonics::
* Conical Functions::
* Radial Functions for Hyperbolic Space::
@end menu
@node Legendre Polynomials
@subsection Legendre Polynomials
@deftypefun double gsl_sf_legendre_P1 (double @var{x})
@deftypefunx double gsl_sf_legendre_P2 (double @var{x})
@deftypefunx double gsl_sf_legendre_P3 (double @var{x})
@deftypefunx int gsl_sf_legendre_P1_e (double @var{x}, gsl_sf_result * @var{result})
@deftypefunx int gsl_sf_legendre_P2_e (double @var{x}, gsl_sf_result * @var{result})
@deftypefunx int gsl_sf_legendre_P3_e (double @var{x}, gsl_sf_result * @var{result})
These functions evaluate the Legendre polynomials
@c{$P_l(x)$}
@math{P_l(x)} using explicit
representations for @math{l=1, 2, 3}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_legendre_Pl (int @var{l}, double @var{x})
@deftypefunx int gsl_sf_legendre_Pl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})
These functions evaluate the Legendre polynomial @c{$P_l(x)$}
@math{P_l(x)} for a specific value of @var{l},
@var{x} subject to @c{$l \ge 0$}
@math{l >= 0},
@c{$|x| \le 1$}
@math{|x| <= 1}
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun int gsl_sf_legendre_Pl_array (int @var{lmax}, double @var{x}, double @var{result_array}[])
@deftypefunx int gsl_sf_legendre_Pl_deriv_array (int @var{lmax}, double @var{x}, double @var{result_array}[], double @var{result_deriv_array}[])
These functions compute arrays of Legendre polynomials
@math{P_l(x)} and derivatives @math{dP_l(x)/dx},
for @math{l = 0, \dots, lmax},
@c{$|x| \le 1$}
@math{|x| <= 1}
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_legendre_Q0 (double @var{x})
@deftypefunx int gsl_sf_legendre_Q0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the Legendre function @math{Q_0(x)} for @math{x >
-1}, @c{$x \ne 1$}
@math{x != 1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_legendre_Q1 (double @var{x})
@deftypefunx int gsl_sf_legendre_Q1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the Legendre function @math{Q_1(x)} for @math{x >
-1}, @c{$x \ne 1$}
@math{x != 1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_legendre_Ql (int @var{l}, double @var{x})
@deftypefunx int gsl_sf_legendre_Ql_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the Legendre function @math{Q_l(x)} for @math{x >
-1}, @c{$x \ne 1$}
@math{x != 1} and @c{$l \ge 0$}
@math{l >= 0}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Associated Legendre Polynomials and Spherical Harmonics
@subsection Associated Legendre Polynomials and Spherical Harmonics
The following functions compute the associated Legendre Polynomials
@math{P_l^m(x)}. Note that this function grows combinatorially with
@math{l} and can overflow for @math{l} larger than about 150. There is
no trouble for small @math{m}, but overflow occurs when @math{m} and
@math{l} are both large. Rather than allow overflows, these functions
refuse to calculate @math{P_l^m(x)} and return @code{GSL_EOVRFLW} when
they can sense that @math{l} and @math{m} are too big.
If you want to calculate a spherical harmonic, then @emph{do not} use
these functions. Instead use @code{gsl_sf_legendre_sphPlm} below,
which uses a similar recursion, but with the normalized functions.
@deftypefun double gsl_sf_legendre_Plm (int @var{l}, int @var{m}, double @var{x})
@deftypefunx int gsl_sf_legendre_Plm_e (int @var{l}, int @var{m}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the associated Legendre polynomial
@math{P_l^m(x)} for @c{$m \ge 0$}
@math{m >= 0}, @c{$l \ge m$}
@math{l >= m}, @c{$|x| \le 1$}
@math{|x| <= 1}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW
@end deftypefun
@deftypefun int gsl_sf_legendre_Plm_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[])
@deftypefunx int gsl_sf_legendre_Plm_deriv_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[], double @var{result_deriv_array}[])
These functions compute arrays of Legendre polynomials
@math{P_l^m(x)} and derivatives @math{dP_l^m(x)/dx},
for @c{$m \ge 0$}
@math{m >= 0}, @c{$l = |m|, \dots, lmax$}
@math{l = |m|, ..., lmax}, @c{$|x| \le 1$}
@math{|x| <= 1}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_legendre_sphPlm (int @var{l}, int @var{m}, double @var{x})
@deftypefunx int gsl_sf_legendre_sphPlm_e (int @var{l}, int @var{m}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the normalized associated Legendre polynomial
@c{$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$}
@math{\sqrt@{(2l+1)/(4\pi)@} \sqrt@{(l-m)!/(l+m)!@} P_l^m(x)} suitable
for use in spherical harmonics. The parameters must satisfy @c{$m \ge 0$}
@math{m >= 0}, @c{$l \ge m$}
@math{l >= m}, @c{$|x| \le 1$}
@math{|x| <= 1}. Theses routines avoid the overflows
that occur for the standard normalization of @math{P_l^m(x)}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun int gsl_sf_legendre_sphPlm_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[])
@deftypefunx int gsl_sf_legendre_sphPlm_deriv_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[], double @var{result_deriv_array}[])
These functions compute arrays of normalized associated Legendre functions
@c{$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$}
@math{\sqrt@{(2l+1)/(4\pi)@} \sqrt@{(l-m)!/(l+m)!@} P_l^m(x)},
and derivatives,
for @c{$m \ge 0$}
@math{m >= 0}, @c{$l = |m|, \dots, lmax$}
@math{l = |m|, ..., lmax}, @c{$|x| \le 1$}
@math{|x| <= 1.0}
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun int gsl_sf_legendre_array_size (const int @var{lmax}, const int @var{m})
This function returns the size of @var{result_array}[] needed for the array
versions of @math{P_l^m(x)}, @math{@var{lmax} - @var{m} + 1}. @inlinefn{}
@comment Exceptional Return Values: none
@end deftypefun
@node Conical Functions
@subsection Conical Functions
The Conical Functions @c{$P^\mu_{-(1/2)+i\lambda}(x)$}
@math{P^\mu_@{-(1/2)+i\lambda@}(x)} and @c{$Q^\mu_{-(1/2)+i\lambda}$}
@math{Q^\mu_@{-(1/2)+i\lambda@}}
are described in Abramowitz & Stegun, Section 8.12.
@deftypefun double gsl_sf_conicalP_half (double @var{lambda}, double @var{x})
@deftypefunx int gsl_sf_conicalP_half_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular Spherical Conical Function
@c{$P^{1/2}_{-1/2 + i \lambda}(x)$}
@math{P^@{1/2@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_conicalP_mhalf (double @var{lambda}, double @var{x})
@deftypefunx int gsl_sf_conicalP_mhalf_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular Spherical Conical Function
@c{$P^{-1/2}_{-1/2 + i \lambda}(x)$}
@math{P^@{-1/2@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_conicalP_0 (double @var{lambda}, double @var{x})
@deftypefunx int gsl_sf_conicalP_0_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the conical function
@c{$P^0_{-1/2 + i \lambda}(x)$}
@math{P^0_@{-1/2 + i \lambda@}(x)}
for @math{x > -1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_conicalP_1 (double @var{lambda}, double @var{x})
@deftypefunx int gsl_sf_conicalP_1_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the conical function
@c{$P^1_{-1/2 + i \lambda}(x)$}
@math{P^1_@{-1/2 + i \lambda@}(x)} for @math{x > -1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_conicalP_sph_reg (int @var{l}, double @var{lambda}, double @var{x})
@deftypefunx int gsl_sf_conicalP_sph_reg_e (int @var{l}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the Regular Spherical Conical Function
@c{$P^{-1/2-l}_{-1/2 + i \lambda}(x)$}
@math{P^@{-1/2-l@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}, @c{$l \ge -1$}
@math{l >= -1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_conicalP_cyl_reg (int @var{m}, double @var{lambda}, double @var{x})
@deftypefunx int gsl_sf_conicalP_cyl_reg_e (int @var{m}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the Regular Cylindrical Conical Function
@c{$P^{-m}_{-1/2 + i \lambda}(x)$}
@math{P^@{-m@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}, @c{$m \ge -1$}
@math{m >= -1}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Radial Functions for Hyperbolic Space
@subsection Radial Functions for Hyperbolic Space
The following spherical functions are specializations of Legendre
functions which give the regular eigenfunctions of the Laplacian on a
3-dimensional hyperbolic space @math{H3d}. Of particular interest is
the flat limit, @math{\lambda \to \infty}, @math{\eta \to 0},
@math{\lambda\eta} fixed.
@deftypefun double gsl_sf_legendre_H3d_0 (double @var{lambda}, double @var{eta})
@deftypefunx int gsl_sf_legendre_H3d_0_e (double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result})
These routines compute the zeroth radial eigenfunction of the Laplacian on the
3-dimensional hyperbolic space,
@c{$$L^{H3d}_0(\lambda,\eta) := {\sin(\lambda\eta) \over \lambda\sinh(\eta)}$$}
@math{L^@{H3d@}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))}
for @c{$\eta \ge 0$}
@math{\eta >= 0}.
In the flat limit this takes the form
@c{$L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta)$}
@math{L^@{H3d@}_0(\lambda,\eta) = j_0(\lambda\eta)}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_legendre_H3d_1 (double @var{lambda}, double @var{eta})
@deftypefunx int gsl_sf_legendre_H3d_1_e (double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result})
These routines compute the first radial eigenfunction of the Laplacian on
the 3-dimensional hyperbolic space,
@c{$$L^{H3d}_1(\lambda,\eta) := {1\over\sqrt{\lambda^2 + 1}} {\left(\sin(\lambda \eta)\over \lambda \sinh(\eta)\right)} \left(\coth(\eta) - \lambda \cot(\lambda\eta)\right)$$}
@math{L^@{H3d@}_1(\lambda,\eta) := 1/\sqrt@{\lambda^2 + 1@} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))}
for @c{$\eta \ge 0$}
@math{\eta >= 0}.
In the flat limit this takes the form
@c{$L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta)$}
@math{L^@{H3d@}_1(\lambda,\eta) = j_1(\lambda\eta)}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_legendre_H3d (int @var{l}, double @var{lambda}, double @var{eta})
@deftypefunx int gsl_sf_legendre_H3d_e (int @var{l}, double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result})
These routines compute the @var{l}-th radial eigenfunction of the
Laplacian on the 3-dimensional hyperbolic space @c{$\eta \ge 0$}
@math{\eta >= 0}, @c{$l \ge 0$}
@math{l >= 0}. In the flat limit this takes the form
@c{$L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta)$}
@math{L^@{H3d@}_l(\lambda,\eta) = j_l(\lambda\eta)}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun int gsl_sf_legendre_H3d_array (int @var{lmax}, double @var{lambda}, double @var{eta}, double @var{result_array}[])
This function computes an array of radial eigenfunctions
@c{$L^{H3d}_l( \lambda, \eta)$}
@math{L^@{H3d@}_l(\lambda, \eta)}
for @c{$0 \le l \le lmax$}
@math{0 <= l <= lmax}.
@comment Exceptional Return Values:
@end deftypefun
|