1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
/* Cholesky Decomposition
*
* Copyright (C) 2000 Thomas Walter
*
* 03 May 2000: Modified for GSL by Brian Gough
* 29 Jul 2005: Additions by Gerard Jungman
* Copyright (C) 2000,2001, 2002, 2003, 2005, 2007 Brian Gough, Gerard Jungman
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 3, or (at your option) any
* later version.
*
* This source is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/*
* Cholesky decomposition of a symmetrix positive definite matrix.
* This is useful to solve the matrix arising in
* periodic cubic splines
* approximating splines
*
* This algorithm does:
* A = L * L'
* with
* L := lower left triangle matrix
* L' := the transposed form of L.
*
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
static inline
double
quiet_sqrt (double x)
/* avoids runtime error, for checking matrix for positive definiteness */
{
return (x >= 0) ? sqrt(x) : GSL_NAN;
}
int
gsl_linalg_cholesky_decomp (gsl_matrix * A)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M != N)
{
GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
}
else
{
size_t i,j,k;
int status = 0;
/* Do the first 2 rows explicitly. It is simple, and faster. And
* one can return if the matrix has only 1 or 2 rows.
*/
double A_00 = gsl_matrix_get (A, 0, 0);
double L_00 = quiet_sqrt(A_00);
if (A_00 <= 0)
{
status = GSL_EDOM ;
}
gsl_matrix_set (A, 0, 0, L_00);
if (M > 1)
{
double A_10 = gsl_matrix_get (A, 1, 0);
double A_11 = gsl_matrix_get (A, 1, 1);
double L_10 = A_10 / L_00;
double diag = A_11 - L_10 * L_10;
double L_11 = quiet_sqrt(diag);
if (diag <= 0)
{
status = GSL_EDOM;
}
gsl_matrix_set (A, 1, 0, L_10);
gsl_matrix_set (A, 1, 1, L_11);
}
for (k = 2; k < M; k++)
{
double A_kk = gsl_matrix_get (A, k, k);
for (i = 0; i < k; i++)
{
double sum = 0;
double A_ki = gsl_matrix_get (A, k, i);
double A_ii = gsl_matrix_get (A, i, i);
gsl_vector_view ci = gsl_matrix_row (A, i);
gsl_vector_view ck = gsl_matrix_row (A, k);
if (i > 0) {
gsl_vector_view di = gsl_vector_subvector(&ci.vector, 0, i);
gsl_vector_view dk = gsl_vector_subvector(&ck.vector, 0, i);
gsl_blas_ddot (&di.vector, &dk.vector, &sum);
}
A_ki = (A_ki - sum) / A_ii;
gsl_matrix_set (A, k, i, A_ki);
}
{
gsl_vector_view ck = gsl_matrix_row (A, k);
gsl_vector_view dk = gsl_vector_subvector (&ck.vector, 0, k);
double sum = gsl_blas_dnrm2 (&dk.vector);
double diag = A_kk - sum * sum;
double L_kk = quiet_sqrt(diag);
if (diag <= 0)
{
status = GSL_EDOM;
}
gsl_matrix_set (A, k, k, L_kk);
}
}
/* Now copy the transposed lower triangle to the upper triangle,
* the diagonal is common.
*/
for (i = 1; i < M; i++)
{
for (j = 0; j < i; j++)
{
double A_ij = gsl_matrix_get (A, i, j);
gsl_matrix_set (A, j, i, A_ij);
}
}
if (status == GSL_EDOM)
{
GSL_ERROR ("matrix must be positive definite", GSL_EDOM);
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_cholesky_solve (const gsl_matrix * LLT,
const gsl_vector * b,
gsl_vector * x)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (LLT->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LLT->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* Copy x <- b */
gsl_vector_memcpy (x, b);
/* Solve for c using forward-substitution, L c = b */
gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x);
/* Perform back-substitution, U x = c */
gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_cholesky_svx (const gsl_matrix * LLT,
gsl_vector * x)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (LLT->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* Solve for c using forward-substitution, L c = b */
gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x);
/* Perform back-substitution, U x = c */
gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x);
return GSL_SUCCESS;
}
}
/*
gsl_linalg_cholesky_invert()
Compute the inverse of a symmetric positive definite matrix in
Cholesky form.
Inputs: LLT - matrix in cholesky form on input
A^{-1} = L^{-t} L^{-1} on output
Return: success or error
*/
int
gsl_linalg_cholesky_invert(gsl_matrix * LLT)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else
{
size_t N = LLT->size1;
size_t i, j;
double sum;
gsl_vector_view v1, v2;
/* invert the lower triangle of LLT */
for (i = 0; i < N; ++i)
{
double ajj;
j = N - i - 1;
gsl_matrix_set(LLT, j, j, 1.0 / gsl_matrix_get(LLT, j, j));
ajj = -gsl_matrix_get(LLT, j, j);
if (j < N - 1)
{
gsl_matrix_view m;
m = gsl_matrix_submatrix(LLT, j + 1, j + 1,
N - j - 1, N - j - 1);
v1 = gsl_matrix_subcolumn(LLT, j, j + 1, N - j - 1);
gsl_blas_dtrmv(CblasLower, CblasNoTrans, CblasNonUnit,
&m.matrix, &v1.vector);
gsl_blas_dscal(ajj, &v1.vector);
}
} /* for (i = 0; i < N; ++i) */
/*
* The lower triangle of LLT now contains L^{-1}. Now compute
* A^{-1} = L^{-t} L^{-1}
*
* The (ij) element of A^{-1} is column i of L^{-1} dotted into
* column j of L^{-1}
*/
for (i = 0; i < N; ++i)
{
for (j = i + 1; j < N; ++j)
{
v1 = gsl_matrix_subcolumn(LLT, i, j, N - j);
v2 = gsl_matrix_subcolumn(LLT, j, j, N - j);
/* compute Ainv_{ij} = sum_k Linv_{ki} Linv_{kj} */
gsl_blas_ddot(&v1.vector, &v2.vector, &sum);
/* store in upper triangle */
gsl_matrix_set(LLT, i, j, sum);
}
/* now compute the diagonal element */
v1 = gsl_matrix_subcolumn(LLT, i, i, N - i);
gsl_blas_ddot(&v1.vector, &v1.vector, &sum);
gsl_matrix_set(LLT, i, i, sum);
}
/* copy the transposed upper triangle to the lower triangle */
for (j = 1; j < N; j++)
{
for (i = 0; i < j; i++)
{
double A_ij = gsl_matrix_get (LLT, i, j);
gsl_matrix_set (LLT, j, i, A_ij);
}
}
return GSL_SUCCESS;
}
} /* gsl_linalg_cholesky_invert() */
int
gsl_linalg_cholesky_decomp_unit(gsl_matrix * A, gsl_vector * D)
{
const size_t N = A->size1;
size_t i, j;
/* initial Cholesky */
int stat_chol = gsl_linalg_cholesky_decomp(A);
if(stat_chol == GSL_SUCCESS)
{
/* calculate D from diagonal part of initial Cholesky */
for(i = 0; i < N; ++i)
{
const double C_ii = gsl_matrix_get(A, i, i);
gsl_vector_set(D, i, C_ii*C_ii);
}
/* multiply initial Cholesky by 1/sqrt(D) on the right */
for(i = 0; i < N; ++i)
{
for(j = 0; j < N; ++j)
{
gsl_matrix_set(A, i, j, gsl_matrix_get(A, i, j) / sqrt(gsl_vector_get(D, j)));
}
}
/* Because the initial Cholesky contained both L and transpose(L),
the result of the multiplication is not symmetric anymore;
but the lower triangle _is_ correct. Therefore we reflect
it to the upper triangle and declare victory.
*/
for(i = 0; i < N; ++i)
for(j = i + 1; j < N; ++j)
gsl_matrix_set(A, i, j, gsl_matrix_get(A, j, i));
}
return stat_chol;
}
|