File: cholesky.c

package info (click to toggle)
gsl-doc 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 20,420 kB
  • ctags: 11,494
  • sloc: ansic: 187,017; sh: 10,550; makefile: 715
file content (358 lines) | stat: -rw-r--r-- 9,283 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* Cholesky Decomposition
 *
 * Copyright (C) 2000  Thomas Walter
 *
 * 03 May 2000: Modified for GSL by Brian Gough
 * 29 Jul 2005: Additions by Gerard Jungman
 * Copyright (C) 2000,2001, 2002, 2003, 2005, 2007 Brian Gough, Gerard Jungman
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 3, or (at your option) any
 * later version.
 *
 * This source is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

/*
 * Cholesky decomposition of a symmetrix positive definite matrix.
 * This is useful to solve the matrix arising in
 *    periodic cubic splines
 *    approximating splines
 *
 * This algorithm does:
 *   A = L * L'
 * with
 *   L  := lower left triangle matrix
 *   L' := the transposed form of L.
 *
 */

#include <config.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>

static inline 
double
quiet_sqrt (double x)  
     /* avoids runtime error, for checking matrix for positive definiteness */
{
  return (x >= 0) ? sqrt(x) : GSL_NAN;
}

int
gsl_linalg_cholesky_decomp (gsl_matrix * A)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (M != N)
    {
      GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
    }
  else
    {
      size_t i,j,k;
      int status = 0;

      /* Do the first 2 rows explicitly.  It is simple, and faster.  And
       * one can return if the matrix has only 1 or 2 rows.  
       */

      double A_00 = gsl_matrix_get (A, 0, 0);
      
      double L_00 = quiet_sqrt(A_00);
      
      if (A_00 <= 0)
        {
          status = GSL_EDOM ;
        }

      gsl_matrix_set (A, 0, 0, L_00);
  
      if (M > 1)
        {
          double A_10 = gsl_matrix_get (A, 1, 0);
          double A_11 = gsl_matrix_get (A, 1, 1);
          
          double L_10 = A_10 / L_00;
          double diag = A_11 - L_10 * L_10;
          double L_11 = quiet_sqrt(diag);
          
          if (diag <= 0)
            {
              status = GSL_EDOM;
            }

          gsl_matrix_set (A, 1, 0, L_10);        
          gsl_matrix_set (A, 1, 1, L_11);
        }
      
      for (k = 2; k < M; k++)
        {
          double A_kk = gsl_matrix_get (A, k, k);
          
          for (i = 0; i < k; i++)
            {
              double sum = 0;

              double A_ki = gsl_matrix_get (A, k, i);
              double A_ii = gsl_matrix_get (A, i, i);

              gsl_vector_view ci = gsl_matrix_row (A, i);
              gsl_vector_view ck = gsl_matrix_row (A, k);

              if (i > 0) {
                gsl_vector_view di = gsl_vector_subvector(&ci.vector, 0, i);
                gsl_vector_view dk = gsl_vector_subvector(&ck.vector, 0, i);
                
                gsl_blas_ddot (&di.vector, &dk.vector, &sum);
              }

              A_ki = (A_ki - sum) / A_ii;
              gsl_matrix_set (A, k, i, A_ki);
            } 

          {
            gsl_vector_view ck = gsl_matrix_row (A, k);
            gsl_vector_view dk = gsl_vector_subvector (&ck.vector, 0, k);
            
            double sum = gsl_blas_dnrm2 (&dk.vector);
            double diag = A_kk - sum * sum;

            double L_kk = quiet_sqrt(diag);
            
            if (diag <= 0)
              {
                status = GSL_EDOM;
              }
            
            gsl_matrix_set (A, k, k, L_kk);
          }
        }

      /* Now copy the transposed lower triangle to the upper triangle,
       * the diagonal is common.  
       */
      
      for (i = 1; i < M; i++)
        {
          for (j = 0; j < i; j++)
            {
              double A_ij = gsl_matrix_get (A, i, j);
              gsl_matrix_set (A, j, i, A_ij);
            }
        } 
      
      if (status == GSL_EDOM)
        {
          GSL_ERROR ("matrix must be positive definite", GSL_EDOM);
        }
      
      return GSL_SUCCESS;
    }
}


int
gsl_linalg_cholesky_solve (const gsl_matrix * LLT,
                           const gsl_vector * b,
                           gsl_vector * x)
{
  if (LLT->size1 != LLT->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else if (LLT->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (LLT->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      /* Copy x <- b */

      gsl_vector_memcpy (x, b);

      /* Solve for c using forward-substitution, L c = b */

      gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x);

      /* Perform back-substitution, U x = c */

      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x);


      return GSL_SUCCESS;
    }
}

int
gsl_linalg_cholesky_svx (const gsl_matrix * LLT,
                         gsl_vector * x)
{
  if (LLT->size1 != LLT->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else if (LLT->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      /* Solve for c using forward-substitution, L c = b */

      gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x);

      /* Perform back-substitution, U x = c */

      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x);

      return GSL_SUCCESS;
    }
}

/*
gsl_linalg_cholesky_invert()
  Compute the inverse of a symmetric positive definite matrix in
Cholesky form.

Inputs: LLT - matrix in cholesky form on input
              A^{-1} = L^{-t} L^{-1} on output

Return: success or error
*/

int
gsl_linalg_cholesky_invert(gsl_matrix * LLT)
{
  if (LLT->size1 != LLT->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else
    {
      size_t N = LLT->size1;
      size_t i, j;
      double sum;
      gsl_vector_view v1, v2;

      /* invert the lower triangle of LLT */
      for (i = 0; i < N; ++i)
        {
          double ajj;

          j = N - i - 1;

          gsl_matrix_set(LLT, j, j, 1.0 / gsl_matrix_get(LLT, j, j));
          ajj = -gsl_matrix_get(LLT, j, j);

          if (j < N - 1)
            {
              gsl_matrix_view m;
              
              m = gsl_matrix_submatrix(LLT, j + 1, j + 1,
                                       N - j - 1, N - j - 1);
              v1 = gsl_matrix_subcolumn(LLT, j, j + 1, N - j - 1);

              gsl_blas_dtrmv(CblasLower, CblasNoTrans, CblasNonUnit,
                             &m.matrix, &v1.vector);

              gsl_blas_dscal(ajj, &v1.vector);
            }
        } /* for (i = 0; i < N; ++i) */

      /*
       * The lower triangle of LLT now contains L^{-1}. Now compute
       * A^{-1} = L^{-t} L^{-1}
       *
       * The (ij) element of A^{-1} is column i of L^{-1} dotted into
       * column j of L^{-1}
       */

      for (i = 0; i < N; ++i)
        {
          for (j = i + 1; j < N; ++j)
            {
              v1 = gsl_matrix_subcolumn(LLT, i, j, N - j);
              v2 = gsl_matrix_subcolumn(LLT, j, j, N - j);

              /* compute Ainv_{ij} = sum_k Linv_{ki} Linv_{kj} */
              gsl_blas_ddot(&v1.vector, &v2.vector, &sum);

              /* store in upper triangle */
              gsl_matrix_set(LLT, i, j, sum);
            }

          /* now compute the diagonal element */
          v1 = gsl_matrix_subcolumn(LLT, i, i, N - i);
          gsl_blas_ddot(&v1.vector, &v1.vector, &sum);
          gsl_matrix_set(LLT, i, i, sum);
        }

      /* copy the transposed upper triangle to the lower triangle */

      for (j = 1; j < N; j++)
        {
          for (i = 0; i < j; i++)
            {
              double A_ij = gsl_matrix_get (LLT, i, j);
              gsl_matrix_set (LLT, j, i, A_ij);
            }
        } 

      return GSL_SUCCESS;
    }
} /* gsl_linalg_cholesky_invert() */

int
gsl_linalg_cholesky_decomp_unit(gsl_matrix * A, gsl_vector * D)
{
  const size_t N = A->size1;
  size_t i, j;

  /* initial Cholesky */
  int stat_chol = gsl_linalg_cholesky_decomp(A);

  if(stat_chol == GSL_SUCCESS)
  {
    /* calculate D from diagonal part of initial Cholesky */
    for(i = 0; i < N; ++i)
    {
      const double C_ii = gsl_matrix_get(A, i, i);
      gsl_vector_set(D, i, C_ii*C_ii);
    }

    /* multiply initial Cholesky by 1/sqrt(D) on the right */
    for(i = 0; i < N; ++i)
    {
      for(j = 0; j < N; ++j)
      {
        gsl_matrix_set(A, i, j, gsl_matrix_get(A, i, j) / sqrt(gsl_vector_get(D, j)));
      }
    }

    /* Because the initial Cholesky contained both L and transpose(L),
       the result of the multiplication is not symmetric anymore;
       but the lower triangle _is_ correct. Therefore we reflect
       it to the upper triangle and declare victory.
       */
    for(i = 0; i < N; ++i)
      for(j = i + 1; j < N; ++j)
        gsl_matrix_set(A, i, j, gsl_matrix_get(A, j, i));
  }

  return stat_chol;
}