1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* linalg/choleskyc.c
*
* Copyright (C) 2007 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_errno.h>
/*
* This module contains routines related to the Cholesky decomposition
* of a complex Hermitian positive definite matrix.
*/
static void cholesky_complex_conj_vector(gsl_vector_complex *v);
/*
gsl_linalg_complex_cholesky_decomp()
Perform the Cholesky decomposition on a Hermitian positive definite
matrix. See Golub & Van Loan, "Matrix Computations" (3rd ed),
algorithm 4.2.2.
Inputs: A - (input/output) complex postive definite matrix
Return: success or error
The lower triangle of A is overwritten with the Cholesky decomposition
*/
int
gsl_linalg_complex_cholesky_decomp(gsl_matrix_complex *A)
{
const size_t N = A->size1;
if (N != A->size2)
{
GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
}
else
{
size_t i, j;
gsl_complex z;
double ajj;
for (j = 0; j < N; ++j)
{
z = gsl_matrix_complex_get(A, j, j);
ajj = GSL_REAL(z);
if (j > 0)
{
gsl_vector_complex_const_view aj =
gsl_matrix_complex_const_subrow(A, j, 0, j);
gsl_blas_zdotc(&aj.vector, &aj.vector, &z);
ajj -= GSL_REAL(z);
}
if (ajj <= 0.0)
{
GSL_ERROR("matrix is not positive definite", GSL_EDOM);
}
ajj = sqrt(ajj);
GSL_SET_COMPLEX(&z, ajj, 0.0);
gsl_matrix_complex_set(A, j, j, z);
if (j < N - 1)
{
gsl_vector_complex_view av =
gsl_matrix_complex_subcolumn(A, j, j + 1, N - j - 1);
if (j > 0)
{
gsl_vector_complex_view aj =
gsl_matrix_complex_subrow(A, j, 0, j);
gsl_matrix_complex_view am =
gsl_matrix_complex_submatrix(A, j + 1, 0, N - j - 1, j);
cholesky_complex_conj_vector(&aj.vector);
gsl_blas_zgemv(CblasNoTrans,
GSL_COMPLEX_NEGONE,
&am.matrix,
&aj.vector,
GSL_COMPLEX_ONE,
&av.vector);
cholesky_complex_conj_vector(&aj.vector);
}
gsl_blas_zdscal(1.0 / ajj, &av.vector);
}
}
/* Now store L^H in upper triangle */
for (i = 1; i < N; ++i)
{
for (j = 0; j < i; ++j)
{
z = gsl_matrix_complex_get(A, i, j);
gsl_matrix_complex_set(A, j, i, gsl_complex_conjugate(z));
}
}
return GSL_SUCCESS;
}
} /* gsl_linalg_complex_cholesky_decomp() */
/*
gsl_linalg_complex_cholesky_solve()
Solve A x = b where A is in cholesky form
*/
int
gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * cholesky,
const gsl_vector_complex * b,
gsl_vector_complex * x)
{
if (cholesky->size1 != cholesky->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (cholesky->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (cholesky->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
gsl_vector_complex_memcpy (x, b);
/* solve for y using forward-substitution, L y = b */
gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x);
/* perform back-substitution, L^H x = y */
gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x);
return GSL_SUCCESS;
}
} /* gsl_linalg_complex_cholesky_solve() */
/*
gsl_linalg_complex_cholesky_svx()
Solve A x = b in place where A is in cholesky form
*/
int
gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * cholesky,
gsl_vector_complex * x)
{
if (cholesky->size1 != cholesky->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (cholesky->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* solve for y using forward-substitution, L y = b */
gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x);
/* perform back-substitution, L^H x = y */
gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x);
return GSL_SUCCESS;
}
} /* gsl_linalg_complex_cholesky_svx() */
/********************************************
* INTERNAL ROUTINES *
********************************************/
static void
cholesky_complex_conj_vector(gsl_vector_complex *v)
{
size_t i;
for (i = 0; i < v->size; ++i)
{
gsl_complex z = gsl_vector_complex_get(v, i);
gsl_vector_complex_set(v, i, gsl_complex_conjugate(z));
}
} /* cholesky_complex_conj_vector() */
|