1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/* siman/test.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_siman.h>
#include <gsl/gsl_ieee_utils.h>
#include <stdio.h>
/* set up parameters for this simulated annealing run */
#define N_TRIES 200 /* how many points do we try before stepping */
#define ITERS_FIXED_T 1000 /* how many iterations for each T? */
#define STEP_SIZE 1.0 /* max step size in random walk */
#define K 1.0 /* Boltzmann constant */
#define T_INITIAL 0.008 /* initial temperature */
#define MU_T 1.003 /* damping factor for temperature */
#define T_MIN 2.0e-6
gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,
K, T_INITIAL, MU_T, T_MIN};
double square (double x) ;
double square (double x) { return x * x ; }
double E1(void *xp);
double M1(void *xp, void *yp);
void S1(const gsl_rng * r, void *xp, double step_size);
void P1(void *xp);
/* now some functions to test in one dimension */
double E1(void *xp)
{
double x = * ((double *) xp);
return exp(-square(x-1))*sin(8*x) - exp(-square(x-1000))*0.89;
}
double M1(void *xp, void *yp)
{
double x = *((double *) xp);
double y = *((double *) yp);
return fabs(x - y);
}
void S1(const gsl_rng * r, void *xp, double step_size)
{
double old_x = *((double *) xp);
double new_x;
new_x = gsl_rng_uniform(r)*2*step_size - step_size + old_x;
memcpy(xp, &new_x, sizeof(new_x));
}
void P1(void *xp)
{
printf(" %12g ", *((double *) xp));
}
int main(void)
{
double x_min = 1.36312999455315182 ;
double x ;
gsl_rng * r = gsl_rng_alloc (gsl_rng_env_setup()) ;
gsl_ieee_env_setup ();
/* The function tested here has multiple mimima.
The global minimum is at x = 1.36312999, (f = -0.87287)
There is a local minimum at x = 0.60146196, (f = -0.84893) */
x = -10.0 ;
gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL,
sizeof(double), params);
gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=-10") ;
x = +10.0 ;
gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL,
sizeof(double), params);
gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=10") ;
/* Start at the false minimum */
x = +0.6 ;
gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL,
sizeof(double), params);
gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=0.6") ;
x = +0.5 ;
gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL,
sizeof(double), params);
gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=0.5") ;
x = +0.4 ;
gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL,
sizeof(double), params);
gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=0.4") ;
gsl_rng_free(r);
exit (gsl_test_summary ());
#ifdef JUNK
x0.D1 = 12.0;
printf("#one dimensional problem, x0 = %f\n", x0.D1);
gsl_siman_Usolve(r, &x0, test_E_1D, test_step_1D, distance_1D,
print_pos_1D, params);
x0.D2[0] = 12.0;
x0.D2[1] = 5.5;
printf("#two dimensional problem, (x0,y0) = (%f,%f)\n",
x0.D2[0], x0.D2[1]);
gsl_siman_Usolve(r, &x0, test_E_2D, test_step_2D, distance_2D,
print_pos_2D, params);
x0.D3[0] = 12.2;
x0.D3[1] = 5.5;
x0.D3[2] = -15.5;
printf("#three dimensional problem, (x0,y0,z0) = (%f,%f,%f)\n",
x0.D3[0], x0.D3[1], x0.D3[2]);
gsl_siman_Usolve(r, &x0, test_E_3D, test_step_3D, distance_3D,
print_pos_3D, params);
x0.D2[0] = 12.2;
x0.D2[1] = 5.5;
gsl_siman_solve(r, &x0, test_E_2D, test_step_2D, distance_2D, print_pos_2D, params);
x0.D3[0] = 12.2;
x0.D3[1] = 5.5;
x0.D3[2] = -15.5;
gsl_siman_solve(r, &x0, test_E_3D, test_step_3D, distance_3D, print_pos_3D, params);
return 0;
#endif
}
|