| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 
 | * Could probably return immediately for exact zeros in 3j,6j,9j
functions.  Easiest to implement for 3j.
  Note from Serge Winitzki <serge@cosmos.phy.tufts.edu>:
  The package "matpack" (www.matpack.de) includes many special functions, 
  also the 3j symbols. They refer to some quite complicated numerical 
  methods using recursion relations to get the right answers for large 
  momenta, and to 1975-1976 papers by Schulten and Gordon for the 
  description of the algorithms. The papers can be downloaded for free at
  http://www.ks.uiuc.edu/Publications/Papers/ 
  http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU76B
  http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU75A
  http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU75
* add Fresnel Integrals to specfunc.  See TOMS 723 + 2 subsequent
errata.
* make mode variables consistent in specfunc -- some seem to be
unnecessary from performance point of view since the speed difference
is negligible.
* From: "Alexander Babansky" <babansky@mail.ru>
To: "Brian Gough" <bjg@network-theory.co.uk>
Subject: Re: gsl-1.2
Date: Sun, 3 Nov 2002 14:15:15 -0500
Hi Brian,
May I suggest you to add another function to gsl-1.2 ?
It's a modified Ei(x) function:
Em(x)=exp(-x)*Ei(x);
As u  might know, Ei(x) raises as e^x on the negative interval.
Therefore, Ei(100) is very very large.
But Ei(100)*exp(-100) = 0.010;
Unfortunately, if u try x=800 u'll get overflow in Ei(800).
but Ei(800)*exp(-800) should be around 0.0001;
Modified function Em(x) is used in cos, sin integrals such as:
int_0^\infinity dx sin(bx)/(x^2+z^2)=(1/2z)*(Em(bz)-Em(-bz));
int_0^\infinity dx x cos(bx)/(x^2+z^2)=(1/2)*(Em(bz)+Em(-bz));
One of possible ways to add it to the library is:
Em(x) = - PV int_0^\infinity e^(-t)/(t+x) dt
Sincerely,
Alex
DONE: Wed Nov  6 13:06:42 MST 2002 [GJ]
----------------------------------------------------------------------
The following should be finished before a 1.0 level release.
* Implement the conicalP_sph_reg() functions.
  DONE: Fri Nov  6 23:33:53 MST 1998 [GJ]
* Irregular (Q) Legendre functions, at least
  the integer order ones. More general cases
  can probably wait.
  DONE: Sat Nov  7 15:47:35 MST 1998 [GJ]
* Make hyperg_1F1() work right.
  This is the last remaining source of test failures.
  The problem is with an unstable recursion in certain cases.
  Look for the recursion with the variable named "start_pair";
  this is stupid hack to keep track of when the recursion
  result is going the wrong way for awhile by remembering the
  minimum value. An error estimate is amde from that. But it
  is just a hack. Somethign must be done abou that case.
* Clean-up Coulomb wave functions. This does not
  mean completing a fully controlled low-energy
  evaluation, which is a larger project.
  DONE: Sun May 16 13:49:47 MDT 1999 [GJ]
* Clean-up the Fermi-Dirac code. The full Fermi-Dirac
  functions can probably wait until a later release,
  but we should have at least the common j = integer and
  j = 1/2-integer cases for the 1.0 release. These
  are not too hard.
  DONE: Sat Nov  7 19:46:27 MST 1998 [GJ]
* Go over the tests and make sure nothing is left out.
* Sanitize all the error-checking, error-estimation,
  algorithm tuning, etc.
* Fill out our scorecard, working from Lozier's
  "Software Needs in Special Functions" paper.
* Final Seal of Approval
  This section has itself gone through several
  revisions (sigh), proving that the notion of
  done-ness is ill-defined. So it is worth
  stating the criteria for done-ness explicitly:
  o interfaces stabilized
  o error-estimation in place
  o all deprecated constructs removed
  o passes tests
  - airy.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - airy_der.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - airy_zero.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - atanint.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_I0.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel_I1.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel_In.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_Inu.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_J0.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
    
  - bessel_J1.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
    
  - bessel_Jn.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_Jnu.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_K0.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel_K1.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel_Kn.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel_Knu.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_Y0.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
    
  - bessel_Y1.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
    
  - bessel_Yn.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_Ynu.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_amp_phase.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_i.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_j.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_k.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - bessel_olver.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_sequence.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_temme.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_y.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - bessel_zero.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - beta.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - chebyshev.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - clausen.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - coulomb.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - coulomb_bound.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - coupling.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - dawson.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - debye.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - dilog.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - elementary.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - ellint.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - elljac.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - erfc.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - exp.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - expint.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - expint3.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - fermi_dirac.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - gamma.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - gamma_inc.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - gegenbauer.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - hyperg.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - hyperg_0F1.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - hyperg_1F1.c
  - hyperg_2F0.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - hyperg_2F1.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - hyperg_U.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - laguerre.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - legendre_H3d.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - legendre_Qn.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - legendre_con.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - legendre_poly.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - log.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - poch.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - poly.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - pow_int.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - psi.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - result.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - shint.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - sinint.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - synchrotron.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - transport.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS: 
  - trig.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
  - zeta.c
    INTERFACES:
    ERRORESTIM:
    DEPRECATED:
    PASSTESTS:
----------------------------------------------------------------------
The following are important but probably will
not see completion before a 1.0 level release.
* Incomplete Fermi-Dirac functions.
  Other Fermi-Dirac functions, including the
  generic 1/2-integer case, which was not done.
* Implement the low-energy regime for the Coulomb
  wave functions. This is fairly well understood in
  the recent literature but will require some
  detailed work. Specifically this means creating
  a drop-in replacement for coulomb_jwkb() which
  is controlled and extensible.
* General Legendre functions (at least on the cut).
  This subsumes the toroidal functions, so we need not
  consider those separately. SLATEC code exists (originally
  due to Olver+Smith).
* Characterize the algorithms. A significant fraction of
  the code is home-grown and it should be reviewed by
  other parties.
----------------------------------------------------------------------
The following are extra features which need not
be implemented for a version 1.0 release.
* Spheroidal wave functions.
* Mathieu functions.
* Weierstrass elliptic functions.
----------------------------------------------------------------------
Improve accuracy of ERF
NNTP-Posting-Date: Thu, 11 Sep 2003 07:41:42 -0500
From: "George Marsaglia" <geo@stat.fsu.edu>
Newsgroups: comp.lang.c
References: <t4J7b.18514$98.4310@nwrddc03.gnilink.net>
Subject: Re: When (32-bit) double precision isn't precise enough
Date: Thu, 11 Sep 2003 08:41:40 -0400
X-Priority: 3
X-MSMail-Priority: Normal
X-Newsreader: Microsoft Outlook Express 6.00.2800.1158
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1165
Message-ID: <wq2dnQBikNwb8P2iU-KYvg@comcast.com>
Lines: 265
NNTP-Posting-Host: 68.35.247.101
X-Trace: sv3-4YY+jkhhdeQvGKAREa99vDBFHJoKVqVBdUTSuRxA71OwlgxX0uUFnKYs54FlnUs0Xb6BRngKigkd75d!tKin8l8rAQKylaP+4vzTI3AO33bivOw1lKDZUUtXe4lUMW1qn+goUp/Pfksstg==
X-Complaints-To: abuse@comcast.net
X-DMCA-Complaints-To: dmca@comcast.net
X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers
X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly
X-Postfilter: 1.1
Why most of those who deal with the normal integral in probability
theory are still stuck with the historical baggage of the error function
is a puzzle to me, as is the poor quality of the results one gets from
standard library implementations of erf().  (One of the most common
 is based on ALGORITHM AS66, APPL. STATIST.(1973) Vol.22, .424 by HILL,
 which gives only 6-8 digit accuracy).
Here is a listing of my method:
/*
Marsaglia Complementary Normal Distribution Function
   cPhi(x) = integral from x to infinity of exp(-.5*t^2)/sqrt(2*pi), x<15
 15-digit accuracy for x<15, returns 0 for x>15.
#include <math.h>
*/
double cPhi(double x){
long double v[]={0.,.65567954241879847154L,
.42136922928805447322L,.30459029871010329573L,
.23665238291356067062L,.19280810471531576488L,
.16237766089686746182L,.14010418345305024160L,
.12313196325793229628L,.10978728257830829123L,
.99028596471731921395e-1L,.90175675501064682280e-1L,
.82766286501369177252e-1L,.76475761016248502993e-1L,
.71069580538852107091e-1L,.66374235823250173591e-1L};
long double h,a,b,z,t,sum,pwr;
int i,j;
      if(x>15.) return (0.);
      if(x<-15.) return (1.);
        j=fabs(x)+1.;
        z=j;
        h=fabs(x)-z;
        a=v[j];
        b=z*a-1.;
        pwr=1.;
        sum=a+h*b;
           for(i=2;i<60;i+=2){
           a=(a+z*b)/i;
           b=(b+z*a)/(i+1);
           pwr=pwr*h*h;
           t=sum;
           sum=sum+pwr*(a+h*b);
           if(sum==t) break; }
      sum=sum*exp(-.5*x*x-.91893853320467274178L);
      if(x<0.) sum=1.-sum;
      return ((double) sum);
                      }
*/
 end of listing
*/
The method is based on defining phi(x)=exp(-x^2)/sqrt(2pi) and
       R(x)=cPhi(x)/phi(x).
The function R(x) is well-behaved  and terms of its Taylor
series are readily obtained by a two-term recursion.   With an accurate
representation of R(x) at ,say, x=0,1,2,...,15, a simple evaluation
of the Taylor series at intermediate points provides up to
15 digits of accuracy.
An article describing the method will be in the new version of
my Diehard CDROM.   A new version of the Diehard tests
of randomness (but not yet the new DVDROM) is at
   http://www.csis.hku.hk/~diehard/
 George Marsaglia
 |