1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/* specfunc/bessel_K1.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_bessel.h>
#include "error.h"
#include "chebyshev.h"
#include "cheb_eval.c"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/* based on SLATEC besk1(), besk1e() */
/* chebyshev expansions
series for bk1 on the interval 0. to 4.00000d+00
with weighted error 7.02e-18
log weighted error 17.15
significant figures required 16.73
decimal places required 17.67
series for ak1 on the interval 1.25000d-01 to 5.00000d-01
with weighted error 6.06e-17
log weighted error 16.22
significant figures required 15.41
decimal places required 16.83
series for ak12 on the interval 0. to 1.25000d-01
with weighted error 2.58e-17
log weighted error 16.59
significant figures required 15.22
decimal places required 17.16
*/
static double bk1_data[11] = {
0.0253002273389477705,
-0.3531559607765448760,
-0.1226111808226571480,
-0.0069757238596398643,
-0.0001730288957513052,
-0.0000024334061415659,
-0.0000000221338763073,
-0.0000000001411488392,
-0.0000000000006666901,
-0.0000000000000024274,
-0.0000000000000000070
};
static cheb_series bk1_cs = {
bk1_data,
10,
-1, 1,
8
};
static double ak1_data[17] = {
0.27443134069738830,
0.07571989953199368,
-0.00144105155647540,
0.00006650116955125,
-0.00000436998470952,
0.00000035402774997,
-0.00000003311163779,
0.00000000344597758,
-0.00000000038989323,
0.00000000004720819,
-0.00000000000604783,
0.00000000000081284,
-0.00000000000011386,
0.00000000000001654,
-0.00000000000000248,
0.00000000000000038,
-0.00000000000000006
};
static cheb_series ak1_cs = {
ak1_data,
16,
-1, 1,
9
};
static double ak12_data[14] = {
0.06379308343739001,
0.02832887813049721,
-0.00024753706739052,
0.00000577197245160,
-0.00000020689392195,
0.00000000973998344,
-0.00000000055853361,
0.00000000003732996,
-0.00000000000282505,
0.00000000000023720,
-0.00000000000002176,
0.00000000000000215,
-0.00000000000000022,
0.00000000000000002
};
static cheb_series ak12_cs = {
ak12_data,
13,
-1, 1,
7
};
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int gsl_sf_bessel_K1_scaled_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0) {
DOMAIN_ERROR(result);
}
else if(x < 2.0*GSL_DBL_MIN) {
OVERFLOW_ERROR(result);
}
else if(x <= 2.0) {
const double lx = log(x);
const double ex = exp(x);
int stat_I1;
gsl_sf_result I1;
gsl_sf_result c;
cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c);
stat_I1 = gsl_sf_bessel_I1_e(x, &I1);
result->val = ex * ((lx-M_LN2)*I1.val + (0.75 + c.val)/x);
result->err = ex * (c.err/x + fabs(lx)*I1.err);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_I1;
}
else if(x <= 8.0) {
const double sx = sqrt(x);
gsl_sf_result c;
cheb_eval_e(&ak1_cs, (16.0/x-5.0)/3.0, &c);
result->val = (1.25 + c.val) / sx;
result->err = c.err / sx;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
const double sx = sqrt(x);
gsl_sf_result c;
cheb_eval_e(&ak12_cs, 16.0/x-1.0, &c);
result->val = (1.25 + c.val) / sx;
result->err = c.err / sx;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
int gsl_sf_bessel_K1_e(const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0) {
DOMAIN_ERROR(result);
}
else if(x < 2.0*GSL_DBL_MIN) {
OVERFLOW_ERROR(result);
}
else if(x <= 2.0) {
const double lx = log(x);
int stat_I1;
gsl_sf_result I1;
gsl_sf_result c;
cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c);
stat_I1 = gsl_sf_bessel_I1_e(x, &I1);
result->val = (lx-M_LN2)*I1.val + (0.75 + c.val)/x;
result->err = c.err/x + fabs(lx)*I1.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_I1;
}
else {
gsl_sf_result K1_scaled;
int stat_K1 = gsl_sf_bessel_K1_scaled_e(x, &K1_scaled);
int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0,
K1_scaled.val, K1_scaled.err,
result);
result->err = fabs(result->val) * (GSL_DBL_EPSILON*fabs(x) + K1_scaled.err/K1_scaled.val);
return GSL_ERROR_SELECT_2(stat_e, stat_K1);
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_K1_scaled(const double x)
{
EVAL_RESULT(gsl_sf_bessel_K1_scaled_e(x, &result));
}
double gsl_sf_bessel_K1(const double x)
{
EVAL_RESULT(gsl_sf_bessel_K1_e(x, &result));
}
|