1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/* cdf/betainv.c
*
* Copyright (C) 2004 Free Software Foundation, Inc.
* Copyright (C) 2006, 2007 Brian Gough
* Written by Jason H. Stover.
* Modified for GSL by Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* Invert the Beta distribution.
*
* References:
*
* Roger W. Abernathy and Robert P. Smith. "Applying Series Expansion
* to the Inverse Beta Distribution to Find Percentiles of the
* F-Distribution," ACM Transactions on Mathematical Software, volume
* 19, number 4, December 1993, pages 474-480.
*
* G.W. Hill and A.W. Davis. "Generalized asymptotic expansions of a
* Cornish-Fisher type," Annals of Mathematical Statistics, volume 39,
* number 8, August 1968, pages 1264-1273.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_randist.h>
#include "error.h"
static double
bisect (double x, double P, double a, double b, double xtol, double Ptol)
{
double x0 = 0, x1 = 1, Px;
while (fabs(x1 - x0) > xtol) {
Px = gsl_cdf_beta_P (x, a, b);
if (fabs(Px - P) < Ptol) {
/* return as soon as approximation is good enough, including on
the first iteration */
return x;
} else if (Px < P) {
x0 = x;
} else if (Px > P) {
x1 = x;
}
x = 0.5 * (x0 + x1);
}
return x;
}
double
gsl_cdf_beta_Pinv (const double P, const double a, const double b)
{
double x, mean;
if (P < 0.0 || P > 1.0)
{
CDF_ERROR ("P must be in range 0 < P < 1", GSL_EDOM);
}
if (a < 0.0)
{
CDF_ERROR ("a < 0", GSL_EDOM);
}
if (b < 0.0)
{
CDF_ERROR ("b < 0", GSL_EDOM);
}
if (P == 0.0)
{
return 0.0;
}
if (P == 1.0)
{
return 1.0;
}
if (P > 0.5)
{
return gsl_cdf_beta_Qinv (1 - P, a, b);
}
mean = a / (a + b);
if (P < 0.1)
{
/* small x */
double lg_ab = gsl_sf_lngamma (a + b);
double lg_a = gsl_sf_lngamma (a);
double lg_b = gsl_sf_lngamma (b);
double lx = (log (a) + lg_a + lg_b - lg_ab + log (P)) / a;
if (lx <= 0) {
x = exp (lx); /* first approximation */
x *= pow (1 - x, -(b - 1) / a); /* second approximation */
} else {
x = mean;
}
if (x > mean)
x = mean;
}
else
{
/* Use expected value as first guess */
x = mean;
}
/* Do bisection to get closer */
x = bisect (x, P, a, b, 0.01, 0.01);
{
double lambda, dP, phi;
unsigned int n = 0;
start:
dP = P - gsl_cdf_beta_P (x, a, b);
phi = gsl_ran_beta_pdf (x, a, b);
if (dP == 0.0 || n++ > 64)
goto end;
lambda = dP / GSL_MAX (2 * fabs (dP / x), phi);
{
double step0 = lambda;
double step1 = -((a - 1) / x - (b - 1) / (1 - x)) * lambda * lambda / 2;
double step = step0;
if (fabs (step1) < fabs (step0))
{
step += step1;
}
else
{
/* scale back step to a reasonable size when too large */
step *= 2 * fabs (step0 / step1);
};
if (x + step > 0 && x + step < 1)
{
x += step;
}
else
{
x = sqrt (x) * sqrt (mean); /* try a new starting point */
}
if (fabs (step0) > 1e-10 * x)
goto start;
}
end:
if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P)
{
GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN);
}
return x;
}
}
double
gsl_cdf_beta_Qinv (const double Q, const double a, const double b)
{
if (Q < 0.0 || Q > 1.0)
{
CDF_ERROR ("Q must be inside range 0 < Q < 1", GSL_EDOM);
}
if (a < 0.0)
{
CDF_ERROR ("a < 0", GSL_EDOM);
}
if (b < 0.0)
{
CDF_ERROR ("b < 0", GSL_EDOM);
}
if (Q == 0.0)
{
return 1.0;
}
if (Q == 1.0)
{
return 0.0;
}
if (Q > 0.5)
{
return gsl_cdf_beta_Pinv (1 - Q, a, b);
}
else
{
return 1 - gsl_cdf_beta_Pinv (Q, b, a);
};
}
|