1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/* cdf/gammainv.c
*
* Copyright (C) 2003, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf_gamma.h>
#include <stdio.h>
double
gsl_cdf_gamma_Pinv (const double P, const double a, const double b)
{
double x;
if (P == 1.0)
{
return GSL_POSINF;
}
else if (P == 0.0)
{
return 0.0;
}
/* Consider, small, large and intermediate cases separately. The
boundaries at 0.05 and 0.95 have not been optimised, but seem ok
for an initial approximation.
BJG: These approximations aren't really valid, the relevant
criterion is P*gamma(a+1) < 1. Need to rework these routines and
use a single bisection style solver for all the inverse
functions.
*/
if (P < 0.05)
{
double x0 = exp ((gsl_sf_lngamma (a) + log (P)) / a);
x = x0;
}
else if (P > 0.95)
{
double x0 = -log1p (-P) + gsl_sf_lngamma (a);
x = x0;
}
else
{
double xg = gsl_cdf_ugaussian_Pinv (P);
double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a;
x = x0;
}
/* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards
to an improved value of x (Abramowitz & Stegun, 3.6.6)
where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.
*/
{
double lambda, dP, phi;
unsigned int n = 0;
start:
dP = P - gsl_cdf_gamma_P (x, a, 1.0);
phi = gsl_ran_gamma_pdf (x, a, 1.0);
if (dP == 0.0 || n++ > 32)
goto end;
lambda = dP / GSL_MAX (2 * fabs (dP / x), phi);
{
double step0 = lambda;
double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;
double step = step0;
if (fabs (step1) < 0.5 * fabs (step0))
step += step1;
if (x + step > 0)
x += step;
else
{
x /= 2.0;
}
if (fabs (step0) > 1e-10 * x || fabs(step0 * phi) > 1e-10 * P)
goto start;
}
end:
if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P)
{
GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN);
}
return b * x;
}
}
double
gsl_cdf_gamma_Qinv (const double Q, const double a, const double b)
{
double x;
if (Q == 1.0)
{
return 0.0;
}
else if (Q == 0.0)
{
return GSL_POSINF;
}
/* Consider, small, large and intermediate cases separately. The
boundaries at 0.05 and 0.95 have not been optimised, but seem ok
for an initial approximation. */
if (Q < 0.05)
{
double x0 = -log (Q) + gsl_sf_lngamma (a);
x = x0;
}
else if (Q > 0.95)
{
double x0 = exp ((gsl_sf_lngamma (a) + log1p (-Q)) / a);
x = x0;
}
else
{
double xg = gsl_cdf_ugaussian_Qinv (Q);
double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a;
x = x0;
}
/* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards
to an improved value of x (Abramowitz & Stegun, 3.6.6)
where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.
*/
{
double lambda, dQ, phi;
unsigned int n = 0;
start:
dQ = Q - gsl_cdf_gamma_Q (x, a, 1.0);
phi = gsl_ran_gamma_pdf (x, a, 1.0);
if (dQ == 0.0 || n++ > 32)
goto end;
lambda = -dQ / GSL_MAX (2 * fabs (dQ / x), phi);
{
double step0 = lambda;
double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;
double step = step0;
if (fabs (step1) < 0.5 * fabs (step0))
step += step1;
if (x + step > 0)
x += step;
else
{
x /= 2.0;
}
if (fabs (step0) > 1e-10 * x)
goto start;
}
}
end:
return b * x;
}
|