1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* dht/dht.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
* Copyright (C) 2009 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman
*/
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_dht.h>
gsl_dht *
gsl_dht_alloc (size_t size)
{
gsl_dht * t;
if(size == 0) {
GSL_ERROR_VAL("size == 0", GSL_EDOM, 0);
}
t = (gsl_dht *)malloc(sizeof(gsl_dht));
if(t == 0) {
GSL_ERROR_VAL("out of memory", GSL_ENOMEM, 0);
}
t->size = size;
t->xmax = -1.0; /* Make it clear that this needs to be calculated. */
t->nu = -1.0;
t->j = (double *)malloc((size+2)*sizeof(double));
if(t->j == 0) {
free(t);
GSL_ERROR_VAL("could not allocate memory for j", GSL_ENOMEM, 0);
}
t->Jjj = (double *)malloc(size*(size+1)/2 * sizeof(double));
if(t->Jjj == 0) {
free(t->j);
free(t);
GSL_ERROR_VAL("could not allocate memory for Jjj", GSL_ENOMEM, 0);
}
t->J2 = (double *)malloc((size+1)*sizeof(double));
if(t->J2 == 0) {
free(t->Jjj);
free(t->j);
free(t);
GSL_ERROR_VAL("could not allocate memory for J2", GSL_ENOMEM, 0);
}
return t;
}
/* Handle internal calculation of Bessel zeros. */
static int
dht_bessel_zeros(gsl_dht * t)
{
unsigned int s;
gsl_sf_result z;
int stat_z = 0;
t->j[0] = 0.0;
for(s=1; s < t->size + 2; s++) {
stat_z += gsl_sf_bessel_zero_Jnu_e(t->nu, s, &z);
t->j[s] = z.val;
}
if(stat_z != 0) {
GSL_ERROR("could not compute bessel zeroes", GSL_EFAILED);
}
else {
return GSL_SUCCESS;
}
}
gsl_dht *
gsl_dht_new (size_t size, double nu, double xmax)
{
int status;
gsl_dht * dht = gsl_dht_alloc (size);
if (dht == 0)
return 0;
status = gsl_dht_init(dht, nu, xmax);
if (status)
return 0;
return dht;
}
int
gsl_dht_init(gsl_dht * t, double nu, double xmax)
{
if(xmax <= 0.0) {
GSL_ERROR ("xmax is not positive", GSL_EDOM);
} else if(nu < 0.0) {
GSL_ERROR ("nu is negative", GSL_EDOM);
}
else {
size_t n, m;
int stat_bz = GSL_SUCCESS;
int stat_J = 0;
double jN;
if(nu != t->nu) {
/* Recalculate Bessel zeros if necessary. */
t->nu = nu;
stat_bz = dht_bessel_zeros(t);
}
jN = t->j[t->size+1];
t->xmax = xmax;
t->kmax = jN / xmax;
t->J2[0] = 0.0;
for(m=1; m<t->size+1; m++) {
gsl_sf_result J;
stat_J += gsl_sf_bessel_Jnu_e(nu + 1.0, t->j[m], &J);
t->J2[m] = J.val * J.val;
}
/* J_nu(j[n] j[m] / j[N]) = Jjj[n(n-1)/2 + m - 1], 1 <= n,m <= size
*/
for(n=1; n<t->size+1; n++) {
for(m=1; m<=n; m++) {
double arg = t->j[n] * t->j[m] / jN;
gsl_sf_result J;
stat_J += gsl_sf_bessel_Jnu_e(nu, arg, &J);
t->Jjj[n*(n-1)/2 + m - 1] = J.val;
}
}
if(stat_J != 0) {
GSL_ERROR("error computing bessel function", GSL_EFAILED);
}
else {
return stat_bz;
}
}
}
double gsl_dht_x_sample(const gsl_dht * t, int n)
{
return t->j[n+1]/t->j[t->size+1] * t->xmax;
}
double gsl_dht_k_sample(const gsl_dht * t, int n)
{
return t->j[n+1] / t->xmax;
}
void gsl_dht_free(gsl_dht * t)
{
RETURN_IF_NULL (t);
free(t->J2);
free(t->Jjj);
free(t->j);
free(t);
}
int
gsl_dht_apply(const gsl_dht * t, double * f_in, double * f_out)
{
const double jN = t->j[t->size + 1];
const double r = t->xmax / jN;
size_t m;
size_t i;
for(m=0; m<t->size; m++) {
double sum = 0.0;
double Y;
for(i=0; i<t->size; i++) {
/* Need to find max and min so that we
* address the symmetric Jjj matrix properly.
* FIXME: we can presumably optimize this
* by just running over the elements of Jjj
* in a deterministic manner.
*/
size_t m_local;
size_t n_local;
if(i < m) {
m_local = i;
n_local = m;
}
else {
m_local = m;
n_local = i;
}
Y = t->Jjj[n_local*(n_local+1)/2 + m_local] / t->J2[i+1];
sum += Y * f_in[i];
}
f_out[m] = sum * 2.0 * r*r;
}
return GSL_SUCCESS;
}
|