1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* diff/diff.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 David Morrison
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#undef GSL_DISABLE_DEPRECATED
#include <gsl/gsl_diff.h>
int
gsl_diff_backward (const gsl_function * f,
double x, double *result, double *abserr)
{
/* Construct a divided difference table with a fairly large step
size to get a very rough estimate of f''. Use this to estimate
the step size which will minimize the error in calculating f'. */
int i, k;
double h = GSL_SQRT_DBL_EPSILON;
double a[3], d[3], a2;
/* Algorithm based on description on pg. 204 of Conte and de Boor
(CdB) - coefficients of Newton form of polynomial of degree 2. */
for (i = 0; i < 3; i++)
{
a[i] = x + (i - 2.0) * h;
d[i] = GSL_FN_EVAL (f, a[i]);
}
for (k = 1; k < 4; k++)
{
for (i = 0; i < 3 - k; i++)
{
d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]);
}
}
/* Adapt procedure described on pg. 282 of CdB to find best value of
step size. */
a2 = fabs (d[0] + d[1] + d[2]);
if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON)
{
a2 = 100.0 * GSL_SQRT_DBL_EPSILON;
}
h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2));
if (h > 100.0 * GSL_SQRT_DBL_EPSILON)
{
h = 100.0 * GSL_SQRT_DBL_EPSILON;
}
*result = (GSL_FN_EVAL (f, x) - GSL_FN_EVAL (f, x - h)) / h;
*abserr = fabs (10.0 * a2 * h);
return GSL_SUCCESS;
}
int
gsl_diff_forward (const gsl_function * f,
double x, double *result, double *abserr)
{
/* Construct a divided difference table with a fairly large step
size to get a very rough estimate of f''. Use this to estimate
the step size which will minimize the error in calculating f'. */
int i, k;
double h = GSL_SQRT_DBL_EPSILON;
double a[3], d[3], a2;
/* Algorithm based on description on pg. 204 of Conte and de Boor
(CdB) - coefficients of Newton form of polynomial of degree 2. */
for (i = 0; i < 3; i++)
{
a[i] = x + i * h;
d[i] = GSL_FN_EVAL (f, a[i]);
}
for (k = 1; k < 4; k++)
{
for (i = 0; i < 3 - k; i++)
{
d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]);
}
}
/* Adapt procedure described on pg. 282 of CdB to find best value of
step size. */
a2 = fabs (d[0] + d[1] + d[2]);
if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON)
{
a2 = 100.0 * GSL_SQRT_DBL_EPSILON;
}
h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2));
if (h > 100.0 * GSL_SQRT_DBL_EPSILON)
{
h = 100.0 * GSL_SQRT_DBL_EPSILON;
}
*result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x)) / h;
*abserr = fabs (10.0 * a2 * h);
return GSL_SUCCESS;
}
int
gsl_diff_central (const gsl_function * f,
double x, double *result, double *abserr)
{
/* Construct a divided difference table with a fairly large step
size to get a very rough estimate of f'''. Use this to estimate
the step size which will minimize the error in calculating f'. */
int i, k;
double h = GSL_SQRT_DBL_EPSILON;
double a[4], d[4], a3;
/* Algorithm based on description on pg. 204 of Conte and de Boor
(CdB) - coefficients of Newton form of polynomial of degree 3. */
for (i = 0; i < 4; i++)
{
a[i] = x + (i - 2.0) * h;
d[i] = GSL_FN_EVAL (f, a[i]);
}
for (k = 1; k < 5; k++)
{
for (i = 0; i < 4 - k; i++)
{
d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]);
}
}
/* Adapt procedure described on pg. 282 of CdB to find best
value of step size. */
a3 = fabs (d[0] + d[1] + d[2] + d[3]);
if (a3 < 100.0 * GSL_SQRT_DBL_EPSILON)
{
a3 = 100.0 * GSL_SQRT_DBL_EPSILON;
}
h = pow (GSL_SQRT_DBL_EPSILON / (2.0 * a3), 1.0 / 3.0);
if (h > 100.0 * GSL_SQRT_DBL_EPSILON)
{
h = 100.0 * GSL_SQRT_DBL_EPSILON;
}
*result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x - h)) / (2.0 * h);
*abserr = fabs (100.0 * a3 * h * h);
return GSL_SUCCESS;
}
|