File: eigen.texi

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (851 lines) | stat: -rw-r--r-- 34,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
@cindex eigenvalues and eigenvectors
This chapter describes functions for computing eigenvalues and
eigenvectors of matrices.  There are routines for real symmetric,
real nonsymmetric, complex hermitian, real generalized symmetric-definite,
complex generalized hermitian-definite, and real generalized nonsymmetric
eigensystems. Eigenvalues can be computed with or without eigenvectors.
The hermitian and real symmetric matrix algorithms are symmetric bidiagonalization
followed by QR reduction. The nonsymmetric algorithm is the Francis QR
double-shift.  The generalized nonsymmetric algorithm is the QZ method due
to Moler and Stewart.

The functions described in this chapter are declared in the header file
@file{gsl_eigen.h}.

@menu
* Real Symmetric Matrices::     
* Complex Hermitian Matrices::  
* Real Nonsymmetric Matrices::
* Real Generalized Symmetric-Definite Eigensystems::
* Complex Generalized Hermitian-Definite Eigensystems::
* Real Generalized Nonsymmetric Eigensystems::
* Sorting Eigenvalues and Eigenvectors::  
* Eigenvalue and Eigenvector Examples::  
* Eigenvalue and Eigenvector References::  
@end menu

@node Real Symmetric Matrices
@section Real Symmetric Matrices
@cindex symmetric matrix, real, eigensystem
@cindex real symmetric matrix, eigensystem

For real symmetric matrices, the library uses the symmetric
bidiagonalization and QR reduction method.  This is described in Golub
& van Loan, section 8.3.  The computed eigenvalues are accurate to an
absolute accuracy of @math{\epsilon ||A||_2}, where @math{\epsilon} is
the machine precision.

@deftypefun {gsl_eigen_symm_workspace *} gsl_eigen_symm_alloc (const size_t @var{n})
@tindex gsl_eigen_symm_workspace
This function allocates a workspace for computing eigenvalues of
@var{n}-by-@var{n} real symmetric matrices.  The size of the workspace
is @math{O(2n)}.
@end deftypefun

@deftypefun void gsl_eigen_symm_free (gsl_eigen_symm_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_symm (gsl_matrix * @var{A}, gsl_vector * @var{eval}, gsl_eigen_symm_workspace * @var{w})
This function computes the eigenvalues of the real symmetric matrix
@var{A}.  Additional workspace of the appropriate size must be provided
in @var{w}.  The diagonal and lower triangular part of @var{A} are
destroyed during the computation, but the strict upper triangular part
is not referenced.  The eigenvalues are stored in the vector @var{eval}
and are unordered.
@end deftypefun

@deftypefun {gsl_eigen_symmv_workspace *} gsl_eigen_symmv_alloc (const size_t @var{n})
@tindex gsl_eigen_symmv_workspace
This function allocates a workspace for computing eigenvalues and
eigenvectors of @var{n}-by-@var{n} real symmetric matrices.  The size of
the workspace is @math{O(4n)}.
@end deftypefun

@deftypefun void gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_symmv (gsl_matrix * @var{A}, gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_symmv_workspace * @var{w})
This function computes the eigenvalues and eigenvectors of the real
symmetric matrix @var{A}.  Additional workspace of the appropriate size
must be provided in @var{w}.  The diagonal and lower triangular part of
@var{A} are destroyed during the computation, but the strict upper
triangular part is not referenced.  The eigenvalues are stored in the
vector @var{eval} and are unordered.  The corresponding eigenvectors are
stored in the columns of the matrix @var{evec}.  For example, the
eigenvector in the first column corresponds to the first eigenvalue.
The eigenvectors are guaranteed to be mutually orthogonal and normalised
to unit magnitude.
@end deftypefun

@node Complex Hermitian Matrices
@section Complex Hermitian Matrices

For hermitian matrices, the library uses the complex form of
the symmetric bidiagonalization and QR reduction method.

@cindex hermitian matrix, complex, eigensystem
@cindex complex hermitian matrix, eigensystem
@deftypefun {gsl_eigen_herm_workspace *} gsl_eigen_herm_alloc (const size_t @var{n})
@tindex gsl_eigen_herm_workspace
This function allocates a workspace for computing eigenvalues of
@var{n}-by-@var{n} complex hermitian matrices.  The size of the workspace
is @math{O(3n)}.
@end deftypefun

@deftypefun void gsl_eigen_herm_free (gsl_eigen_herm_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_herm (gsl_matrix_complex * @var{A}, gsl_vector * @var{eval}, gsl_eigen_herm_workspace * @var{w})
This function computes the eigenvalues of the complex hermitian matrix
@var{A}.  Additional workspace of the appropriate size must be provided
in @var{w}.  The diagonal and lower triangular part of @var{A} are
destroyed during the computation, but the strict upper triangular part
is not referenced.  The imaginary parts of the diagonal are assumed to be
zero and are not referenced. The eigenvalues are stored in the vector
@var{eval} and are unordered.
@end deftypefun

@deftypefun {gsl_eigen_hermv_workspace *} gsl_eigen_hermv_alloc (const size_t @var{n})
@tindex gsl_eigen_hermv_workspace
This function allocates a workspace for computing eigenvalues and
eigenvectors of @var{n}-by-@var{n} complex hermitian matrices.  The size of
the workspace is @math{O(5n)}.
@end deftypefun

@deftypefun void gsl_eigen_hermv_free (gsl_eigen_hermv_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_hermv (gsl_matrix_complex * @var{A}, gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_hermv_workspace * @var{w})
This function computes the eigenvalues and eigenvectors of the complex
hermitian matrix @var{A}.  Additional workspace of the appropriate size
must be provided in @var{w}.  The diagonal and lower triangular part of
@var{A} are destroyed during the computation, but the strict upper
triangular part is not referenced. The imaginary parts of the diagonal
are assumed to be zero and are not referenced.  The eigenvalues are
stored in the vector @var{eval} and are unordered.  The corresponding
complex eigenvectors are stored in the columns of the matrix @var{evec}.
For example, the eigenvector in the first column corresponds to the
first eigenvalue.  The eigenvectors are guaranteed to be mutually
orthogonal and normalised to unit magnitude.
@end deftypefun

@node Real Nonsymmetric Matrices
@section Real Nonsymmetric Matrices
@cindex nonsymmetric matrix, real, eigensystem
@cindex real nonsymmetric matrix, eigensystem

The solution of the real nonsymmetric eigensystem problem for a
matrix @math{A} involves computing the Schur decomposition
@tex
\beforedisplay
$$
A = Z T Z^T
$$
\afterdisplay
@end tex
@ifinfo

@example
A = Z T Z^T
@end example

@end ifinfo
where @math{Z} is an orthogonal matrix of Schur vectors and @math{T},
the Schur form, is quasi upper triangular with diagonal
@math{1}-by-@math{1} blocks which are real eigenvalues of @math{A}, and
diagonal @math{2}-by-@math{2} blocks whose eigenvalues are complex
conjugate eigenvalues of @math{A}. The algorithm used is the double-shift 
Francis method.

@deftypefun {gsl_eigen_nonsymm_workspace *} gsl_eigen_nonsymm_alloc (const size_t @var{n})
@tindex gsl_eigen_nonsymm_workspace
This function allocates a workspace for computing eigenvalues of
@var{n}-by-@var{n} real nonsymmetric matrices. The size of the workspace
is @math{O(2n)}.
@end deftypefun

@deftypefun void gsl_eigen_nonsymm_free (gsl_eigen_nonsymm_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun void gsl_eigen_nonsymm_params (const int @var{compute_t}, const int @var{balance}, gsl_eigen_nonsymm_workspace * @var{w})
This function sets some parameters which determine how the eigenvalue
problem is solved in subsequent calls to @code{gsl_eigen_nonsymm}.

If @var{compute_t} is set to 1, the full Schur form @math{T} will be
computed by @code{gsl_eigen_nonsymm}. If it is set to 0,
@math{T} will not be computed (this is the default setting). Computing
the full Schur form @math{T} requires approximately 1.5--2 times the
number of flops.

If @var{balance} is set to 1, a balancing transformation is applied
to the matrix prior to computing eigenvalues. This transformation is
designed to make the rows and columns of the matrix have comparable
norms, and can result in more accurate eigenvalues for matrices
whose entries vary widely in magnitude. See @ref{Balancing} for more
information. Note that the balancing transformation does not preserve
the orthogonality of the Schur vectors, so if you wish to compute the
Schur vectors with @code{gsl_eigen_nonsymm_Z} you will obtain the Schur
vectors of the balanced matrix instead of the original matrix. The
relationship will be
@tex
\beforedisplay
$$
T = Q^t D^{-1} A D Q
$$
\afterdisplay
@end tex
@ifinfo

@example
T = Q^t D^(-1) A D Q
@end example

@end ifinfo
@noindent
where @var{Q} is the matrix of Schur vectors for the balanced matrix, and
@var{D} is the balancing transformation. Then @code{gsl_eigen_nonsymm_Z}
will compute a matrix @var{Z} which satisfies
@tex
\beforedisplay
$$
T = Z^{-1} A Z
$$
\afterdisplay
@end tex
@ifinfo

@example
T = Z^(-1) A Z
@end example

@end ifinfo
@noindent
with @math{Z = D Q}. Note that @var{Z} will not be orthogonal. For
this reason, balancing is not performed by default.
@end deftypefun

@deftypefun int gsl_eigen_nonsymm (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_eigen_nonsymm_workspace * @var{w})
This function computes the eigenvalues of the real nonsymmetric matrix
@var{A} and stores them in the vector @var{eval}. If @math{T} is
desired, it is stored in the upper portion of @var{A} on output.
Otherwise, on output, the diagonal of @var{A} will contain the
@math{1}-by-@math{1} real eigenvalues and @math{2}-by-@math{2}
complex conjugate eigenvalue systems, and the rest of @var{A} is
destroyed. In rare cases, this function may fail to find all
eigenvalues. If this happens, an error code is returned
and the number of converged eigenvalues is stored in @code{w->n_evals}.
The converged eigenvalues are stored in the beginning of @var{eval}.
@end deftypefun

@deftypefun int gsl_eigen_nonsymm_Z (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_matrix * @var{Z}, gsl_eigen_nonsymm_workspace * @var{w})
This function is identical to @code{gsl_eigen_nonsymm} except that it also
computes the Schur vectors and stores them into @var{Z}.
@end deftypefun

@deftypefun {gsl_eigen_nonsymmv_workspace *} gsl_eigen_nonsymmv_alloc (const size_t @var{n})
@tindex gsl_eigen_nonsymmv_workspace
This function allocates a workspace for computing eigenvalues and
eigenvectors of @var{n}-by-@var{n} real nonsymmetric matrices. The
size of the workspace is @math{O(5n)}.
@end deftypefun

@deftypefun void gsl_eigen_nonsymmv_free (gsl_eigen_nonsymmv_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun void gsl_eigen_nonsymmv_params (const int @var{balance}, gsl_eigen_nonsymm_workspace * @var{w})
This function sets parameters which determine how the eigenvalue
problem is solved in subsequent calls to @code{gsl_eigen_nonsymmv}.
If @var{balance} is set to 1, a balancing transformation is applied
to the matrix. See @code{gsl_eigen_nonsymm_params} for more information.
Balancing is turned off by default since it does not preserve the
orthogonality of the Schur vectors.
@end deftypefun

@deftypefun int gsl_eigen_nonsymmv (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_nonsymmv_workspace * @var{w})
This function computes eigenvalues and right eigenvectors of the
@var{n}-by-@var{n} real nonsymmetric matrix @var{A}. It first calls
@code{gsl_eigen_nonsymm} to compute the eigenvalues, Schur form @math{T}, and
Schur vectors. Then it finds eigenvectors of @math{T} and backtransforms
them using the Schur vectors. The Schur vectors are destroyed in the
process, but can be saved by using @code{gsl_eigen_nonsymmv_Z}. The
computed eigenvectors are normalized to have unit magnitude. On
output, the upper portion of @var{A} contains the Schur form
@math{T}. If @code{gsl_eigen_nonsymm} fails, no eigenvectors are
computed, and an error code is returned.
@end deftypefun

@deftypefun int gsl_eigen_nonsymmv_Z (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_matrix * @var{Z}, gsl_eigen_nonsymmv_workspace * @var{w})
This function is identical to @code{gsl_eigen_nonsymmv} except that it also saves
the Schur vectors into @var{Z}.
@end deftypefun

@node Real Generalized Symmetric-Definite Eigensystems
@section Real Generalized Symmetric-Definite Eigensystems
@cindex generalized symmetric eigensystems

The real generalized symmetric-definite eigenvalue problem is to find
eigenvalues @math{\lambda} and eigenvectors @math{x} such that
@tex
\beforedisplay
$$
A x = \lambda B x
$$
\afterdisplay
@end tex
@ifinfo
@example
A x = \lambda B x
@end example
@end ifinfo
where @math{A} and @math{B} are symmetric matrices, and @math{B} is
positive-definite. This problem reduces to the standard symmetric
eigenvalue problem by applying the Cholesky decomposition to @math{B}:
@tex
\beforedisplay
$$
\eqalign{
A x & = \lambda B x \cr
A x & = \lambda L L^t x \cr
\left( L^{-1} A L^{-t} \right) L^t x & = \lambda L^t x
}
$$
\afterdisplay
@end tex
@ifinfo
@example
                      A x = \lambda B x
                      A x = \lambda L L^t x
( L^@{-1@} A L^@{-t@} ) L^t x = \lambda L^t x
@end example
@end ifinfo
Therefore, the problem becomes @math{C y = \lambda y} where
@c{$C = L^{-1} A L^{-t}$}
@math{C = L^@{-1@} A L^@{-t@}}
is symmetric, and @math{y = L^t x}. The standard
symmetric eigensolver can be applied to the matrix @math{C}.
The resulting eigenvectors are backtransformed to find the
vectors of the original problem. The eigenvalues and eigenvectors
of the generalized symmetric-definite eigenproblem are always real.

@deftypefun {gsl_eigen_gensymm_workspace *} gsl_eigen_gensymm_alloc (const size_t @var{n})
@tindex gsl_eigen_gensymm_workspace
This function allocates a workspace for computing eigenvalues of
@var{n}-by-@var{n} real generalized symmetric-definite eigensystems. The
size of the workspace is @math{O(2n)}.
@end deftypefun

@deftypefun void gsl_eigen_gensymm_free (gsl_eigen_gensymm_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_gensymm (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector * @var{eval}, gsl_eigen_gensymm_workspace * @var{w})
This function computes the eigenvalues of the real generalized
symmetric-definite matrix pair (@var{A}, @var{B}), and stores them 
in @var{eval}, using the method outlined above. On output, @var{B}
contains its Cholesky decomposition and @var{A} is destroyed.
@end deftypefun

@deftypefun {gsl_eigen_gensymmv_workspace *} gsl_eigen_gensymmv_alloc (const size_t @var{n})
@tindex gsl_eigen_gensymmv_workspace
This function allocates a workspace for computing eigenvalues and
eigenvectors of @var{n}-by-@var{n} real generalized symmetric-definite
eigensystems. The size of the workspace is @math{O(4n)}.
@end deftypefun

@deftypefun void gsl_eigen_gensymmv_free (gsl_eigen_gensymmv_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_gensymmv (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_gensymmv_workspace * @var{w})
This function computes the eigenvalues and eigenvectors of the real
generalized symmetric-definite matrix pair (@var{A}, @var{B}), and
stores them in @var{eval} and @var{evec} respectively. The computed
eigenvectors are normalized to have unit magnitude. On output,
@var{B} contains its Cholesky decomposition and @var{A} is destroyed.
@end deftypefun

@node Complex Generalized Hermitian-Definite Eigensystems
@section Complex Generalized Hermitian-Definite Eigensystems
@cindex generalized hermitian definite eigensystems

The complex generalized hermitian-definite eigenvalue problem is to find
eigenvalues @math{\lambda} and eigenvectors @math{x} such that
@tex
\beforedisplay
$$
A x = \lambda B x
$$
\afterdisplay
@end tex
@ifinfo
@example
A x = \lambda B x
@end example
@end ifinfo
where @math{A} and @math{B} are hermitian matrices, and @math{B} is
positive-definite. Similarly to the real case, this can be reduced
to @math{C y = \lambda y} where
@c{$C = L^{-1} A L^{-\dagger}$}
@math{C = L^@{-1@} A L^@{-H@}}
is hermitian, and
@c{$y = L^{\dagger} x$}
@math{y = L^H x}. The standard
hermitian eigensolver can be applied to the matrix @math{C}.
The resulting eigenvectors are backtransformed to find the
vectors of the original problem. The eigenvalues
of the generalized hermitian-definite eigenproblem are always real.

@deftypefun {gsl_eigen_genherm_workspace *} gsl_eigen_genherm_alloc (const size_t @var{n})
@tindex gsl_eigen_genherm_workspace
This function allocates a workspace for computing eigenvalues of
@var{n}-by-@var{n} complex generalized hermitian-definite eigensystems. The
size of the workspace is @math{O(3n)}.
@end deftypefun

@deftypefun void gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_genherm (gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}, gsl_vector * @var{eval}, gsl_eigen_genherm_workspace * @var{w})
This function computes the eigenvalues of the complex generalized
hermitian-definite matrix pair (@var{A}, @var{B}), and stores them 
in @var{eval}, using the method outlined above. On output, @var{B}
contains its Cholesky decomposition and @var{A} is destroyed.
@end deftypefun

@deftypefun {gsl_eigen_genhermv_workspace *} gsl_eigen_genhermv_alloc (const size_t @var{n})
@tindex gsl_eigen_genhermv_workspace
This function allocates a workspace for computing eigenvalues and
eigenvectors of @var{n}-by-@var{n} complex generalized hermitian-definite
eigensystems. The size of the workspace is @math{O(5n)}.
@end deftypefun

@deftypefun void gsl_eigen_genhermv_free (gsl_eigen_genhermv_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_genhermv (gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}, gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_genhermv_workspace * @var{w})
This function computes the eigenvalues and eigenvectors of the complex
generalized hermitian-definite matrix pair (@var{A}, @var{B}), and
stores them in @var{eval} and @var{evec} respectively. The computed
eigenvectors are normalized to have unit magnitude. On output,
@var{B} contains its Cholesky decomposition and @var{A} is destroyed.
@end deftypefun

@node Real Generalized Nonsymmetric Eigensystems
@section Real Generalized Nonsymmetric Eigensystems
@cindex generalized eigensystems

Given two square matrices (@math{A}, @math{B}), the generalized
nonsymmetric eigenvalue problem is to find eigenvalues @math{\lambda} and
eigenvectors @math{x} such that
@tex
\beforedisplay
$$
A x = \lambda B x
$$
\afterdisplay
@end tex
@ifinfo
@example
A x = \lambda B x
@end example
@end ifinfo
We may also define the problem as finding eigenvalues @math{\mu} and
eigenvectors @math{y} such that
@tex
\beforedisplay
$$
\mu A y = B y
$$
\afterdisplay
@end tex
@ifinfo
@example
\mu A y = B y
@end example
@end ifinfo
Note that these two problems are equivalent (with @math{\lambda = 1/\mu})
if neither @math{\lambda} nor @math{\mu} is zero. If say, @math{\lambda}
is zero, then it is still a well defined eigenproblem, but its alternate
problem involving @math{\mu} is not. Therefore, to allow for zero
(and infinite) eigenvalues, the problem which is actually solved is
@tex
\beforedisplay
$$
\beta A x = \alpha B x
$$
\afterdisplay
@end tex
@ifinfo
@example
\beta A x = \alpha B x
@end example
@end ifinfo
The eigensolver routines below will return two values @math{\alpha}
and @math{\beta} and leave it to the user to perform the divisions
@math{\lambda = \alpha / \beta} and @math{\mu = \beta / \alpha}.

If the determinant of the matrix pencil @math{A - \lambda B} is zero
for all @math{\lambda}, the problem is said to be singular; otherwise
it is called regular.  Singularity normally leads to some
@math{\alpha = \beta = 0} which means the eigenproblem is ill-conditioned
and generally does not have well defined eigenvalue solutions. The
routines below are intended for regular matrix pencils and could yield
unpredictable results when applied to singular pencils.

The solution of the real generalized nonsymmetric eigensystem problem for a
matrix pair @math{(A, B)} involves computing the generalized Schur
decomposition
@tex
\beforedisplay
$$
A = Q S Z^T
$$
$$
B = Q T Z^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = Q S Z^T
B = Q T Z^T
@end example
@end ifinfo
where @math{Q} and @math{Z} are orthogonal matrices of left and right
Schur vectors respectively, and @math{(S, T)} is the generalized Schur
form whose diagonal elements give the @math{\alpha} and @math{\beta}
values. The algorithm used is the QZ method due to Moler and Stewart
(see references).

@deftypefun {gsl_eigen_gen_workspace *} gsl_eigen_gen_alloc (const size_t @var{n})
@tindex gsl_eigen_gen_workspace
This function allocates a workspace for computing eigenvalues of
@var{n}-by-@var{n} real generalized nonsymmetric eigensystems. The
size of the workspace is @math{O(n)}.
@end deftypefun

@deftypefun void gsl_eigen_gen_free (gsl_eigen_gen_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun void gsl_eigen_gen_params (const int @var{compute_s}, const int @var{compute_t}, const int @var{balance}, gsl_eigen_gen_workspace * @var{w})
This function sets some parameters which determine how the eigenvalue
problem is solved in subsequent calls to @code{gsl_eigen_gen}.

If @var{compute_s} is set to 1, the full Schur form @math{S} will be
computed by @code{gsl_eigen_gen}. If it is set to 0,
@math{S} will not be computed (this is the default setting). @math{S}
is a quasi upper triangular matrix with 1-by-1 and 2-by-2 blocks
on its diagonal. 1-by-1 blocks correspond to real eigenvalues, and
2-by-2 blocks correspond to complex eigenvalues.

If @var{compute_t} is set to 1, the full Schur form @math{T} will be
computed by @code{gsl_eigen_gen}. If it is set to 0,
@math{T} will not be computed (this is the default setting). @math{T}
is an upper triangular matrix with non-negative elements on its diagonal.
Any 2-by-2 blocks in @math{S} will correspond to a 2-by-2 diagonal
block in @math{T}.

The @var{balance} parameter is currently ignored, since generalized
balancing is not yet implemented.
@end deftypefun

@deftypefun int gsl_eigen_gen (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_eigen_gen_workspace * @var{w})
This function computes the eigenvalues of the real generalized nonsymmetric
matrix pair (@var{A}, @var{B}), and stores them as pairs in
(@var{alpha}, @var{beta}), where @var{alpha} is complex and @var{beta} is
real. If @math{\beta_i} is non-zero, then
@math{\lambda = \alpha_i / \beta_i} is an eigenvalue. Likewise,
if @math{\alpha_i} is non-zero, then
@math{\mu = \beta_i / \alpha_i} is an eigenvalue of the alternate
problem @math{\mu A y = B y}. The elements of @var{beta} are normalized
to be non-negative.

If @math{S} is desired, it is stored in @var{A} on output. If @math{T}
is desired, it is stored in @var{B} on output. The ordering of
eigenvalues in (@var{alpha}, @var{beta}) follows the ordering
of the diagonal blocks in the Schur forms @math{S} and @math{T}. In rare
cases, this function may fail to find all eigenvalues. If this occurs, an
error code is returned.
@end deftypefun

@deftypefun int gsl_eigen_gen_QZ (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix * @var{Q}, gsl_matrix * @var{Z}, gsl_eigen_gen_workspace * @var{w})
This function is identical to @code{gsl_eigen_gen} except that it also
computes the left and right Schur vectors and stores them into @var{Q}
and @var{Z} respectively.
@end deftypefun

@deftypefun {gsl_eigen_genv_workspace *} gsl_eigen_genv_alloc (const size_t @var{n})
@tindex gsl_eigen_genv_workspace
This function allocates a workspace for computing eigenvalues and
eigenvectors of @var{n}-by-@var{n} real generalized nonsymmetric
eigensystems. The size of the workspace is @math{O(7n)}.
@end deftypefun

@deftypefun void gsl_eigen_genv_free (gsl_eigen_genv_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_eigen_genv (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix_complex * @var{evec}, gsl_eigen_genv_workspace * @var{w})
This function computes eigenvalues and right eigenvectors of the
@var{n}-by-@var{n} real generalized nonsymmetric matrix pair
(@var{A}, @var{B}). The eigenvalues are stored in (@var{alpha}, @var{beta})
and the eigenvectors are stored in @var{evec}. It first calls
@code{gsl_eigen_gen} to compute the eigenvalues, Schur forms, and
Schur vectors. Then it finds eigenvectors of the Schur forms and
backtransforms them using the Schur vectors. The Schur vectors are
destroyed in the process, but can be saved by using
@code{gsl_eigen_genv_QZ}. The computed eigenvectors are normalized
to have unit magnitude. On output, (@var{A}, @var{B}) contains
the generalized Schur form (@math{S}, @math{T}). If @code{gsl_eigen_gen}
fails, no eigenvectors are computed, and an error code is returned.
@end deftypefun

@deftypefun int gsl_eigen_genv_QZ (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix_complex * @var{evec}, gsl_matrix * @var{Q}, gsl_matrix * @var{Z}, gsl_eigen_genv_workspace * @var{w})
This function is identical to @code{gsl_eigen_genv} except that it also
computes the left and right Schur vectors and stores them into @var{Q}
and @var{Z} respectively.
@end deftypefun

@node Sorting Eigenvalues and Eigenvectors
@section Sorting Eigenvalues and Eigenvectors
@cindex sorting eigenvalues and eigenvectors

@deftypefun int gsl_eigen_symmv_sort (gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_sort_t @var{sort_type})
This function simultaneously sorts the eigenvalues stored in the vector
@var{eval} and the corresponding real eigenvectors stored in the columns
of the matrix @var{evec} into ascending or descending order according to
the value of the parameter @var{sort_type},

@table @code
@item GSL_EIGEN_SORT_VAL_ASC
ascending order in numerical value
@item GSL_EIGEN_SORT_VAL_DESC
descending order in numerical value
@item GSL_EIGEN_SORT_ABS_ASC
ascending order in magnitude
@item GSL_EIGEN_SORT_ABS_DESC
descending order in magnitude
@end table

@end deftypefun

@deftypefun int gsl_eigen_hermv_sort (gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type})
This function simultaneously sorts the eigenvalues stored in the vector
@var{eval} and the corresponding complex eigenvectors stored in the
columns of the matrix @var{evec} into ascending or descending order
according to the value of the parameter @var{sort_type} as shown above.
@end deftypefun

@deftypefun int gsl_eigen_nonsymmv_sort (gsl_vector_complex * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type})
This function simultaneously sorts the eigenvalues stored in the vector
@var{eval} and the corresponding complex eigenvectors stored in the
columns of the matrix @var{evec} into ascending or descending order
according to the value of the parameter @var{sort_type} as shown above.
Only @code{GSL_EIGEN_SORT_ABS_ASC} and @code{GSL_EIGEN_SORT_ABS_DESC} are
supported due to the eigenvalues being complex.
@end deftypefun

@deftypefun int gsl_eigen_gensymmv_sort (gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_sort_t @var{sort_type})
This function simultaneously sorts the eigenvalues stored in the vector
@var{eval} and the corresponding real eigenvectors stored in the columns
of the matrix @var{evec} into ascending or descending order according to
the value of the parameter @var{sort_type} as shown above.
@end deftypefun

@deftypefun int gsl_eigen_genhermv_sort (gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type})
This function simultaneously sorts the eigenvalues stored in the vector
@var{eval} and the corresponding complex eigenvectors stored in the columns
of the matrix @var{evec} into ascending or descending order according to
the value of the parameter @var{sort_type} as shown above.
@end deftypefun

@deftypefun int gsl_eigen_genv_sort (gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type})
This function simultaneously sorts the eigenvalues stored in the vectors
(@var{alpha}, @var{beta}) and the corresponding complex eigenvectors
stored in the columns of the matrix @var{evec} into ascending or
descending order according to the value of the parameter @var{sort_type}
as shown above. Only @code{GSL_EIGEN_SORT_ABS_ASC} and
@code{GSL_EIGEN_SORT_ABS_DESC} are supported due to the eigenvalues being
complex.
@end deftypefun

@comment @deftypefun int gsl_eigen_jacobi (gsl_matrix * @var{matrix}, gsl_vector * @var{eval}, gsl_matrix * @var{evec}, unsigned int @var{max_rot}, unsigned int * @var{nrot})
@comment This function finds the eigenvectors and eigenvalues of a real symmetric
@comment matrix by Jacobi iteration. The data in the input matrix is destroyed.
@comment @end deftypefun

@comment @deftypefun int gsl_la_invert_jacobi (const gsl_matrix * @var{matrix}, gsl_matrix * @var{ainv}, unsigned int @var{max_rot})
@comment Invert a matrix by Jacobi iteration.
@comment @end deftypefun

@comment @deftypefun int gsl_eigen_sort (gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_sort_t @var{sort_type})
@comment This functions sorts the eigensystem results based on eigenvalues.
@comment Sorts in order of increasing value or increasing
@comment absolute value, depending on the value of
@comment @var{sort_type}, which can be @code{GSL_EIGEN_SORT_VALUE}
@comment or @code{GSL_EIGEN_SORT_ABSVALUE}.
@comment @end deftypefun

@node Eigenvalue and Eigenvector Examples
@section Examples

The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, @math{H(i,j) = 1/(i + j + 1)}.

@example
@verbatiminclude examples/eigen.c
@end example

@noindent
Here is the beginning of the output from the program,

@example
$ ./a.out 
eigenvalue = 9.67023e-05
eigenvector = 
-0.0291933
0.328712
-0.791411
0.514553
...
@end example

@noindent
This can be compared with the corresponding output from @sc{gnu octave},

@example
octave> [v,d] = eig(hilb(4));
octave> diag(d)  
ans =

   9.6702e-05
   6.7383e-03
   1.6914e-01
   1.5002e+00

octave> v 
v =

   0.029193   0.179186  -0.582076   0.792608
  -0.328712  -0.741918   0.370502   0.451923
   0.791411   0.100228   0.509579   0.322416
  -0.514553   0.638283   0.514048   0.252161
@end example

@noindent
Note that the eigenvectors can differ by a change of sign, since the
sign of an eigenvector is arbitrary.

The following program illustrates the use of the nonsymmetric
eigensolver, by computing the eigenvalues and eigenvectors of
the Vandermonde matrix
@c{$V(x;i,j) = x_i^{n - j}$}
@math{V(x;i,j) = x_i^@{n - j@}}
with @math{x = (-1,-2,3,4)}.

@example
@verbatiminclude examples/eigen_nonsymm.c
@end example

@noindent
Here is the beginning of the output from the program,

@example
$ ./a.out 
eigenvalue = -6.41391 + 0i
eigenvector = 
-0.0998822 + 0i
-0.111251 + 0i
0.292501 + 0i
0.944505 + 0i
eigenvalue = 5.54555 + 3.08545i
eigenvector = 
-0.043487 + -0.0076308i
0.0642377 + -0.142127i
-0.515253 + 0.0405118i
-0.840592 + -0.00148565i
...
@end example

@noindent
This can be compared with the corresponding output from @sc{gnu octave},

@example
octave> [v,d] = eig(vander([-1 -2 3 4]));
octave> diag(d)
ans =

  -6.4139 + 0.0000i
   5.5456 + 3.0854i
   5.5456 - 3.0854i
   2.3228 + 0.0000i

octave> v
v =

 Columns 1 through 3:

  -0.09988 + 0.00000i  -0.04350 - 0.00755i  -0.04350 + 0.00755i
  -0.11125 + 0.00000i   0.06399 - 0.14224i   0.06399 + 0.14224i
   0.29250 + 0.00000i  -0.51518 + 0.04142i  -0.51518 - 0.04142i
   0.94451 + 0.00000i  -0.84059 + 0.00000i  -0.84059 - 0.00000i

 Column 4:

  -0.14493 + 0.00000i
   0.35660 + 0.00000i
   0.91937 + 0.00000i
   0.08118 + 0.00000i

@end example
Note that the eigenvectors corresponding to the eigenvalue
@math{5.54555 + 3.08545i} differ by the multiplicative constant
@math{0.9999984 + 0.0017674i} which is an arbitrary phase factor 
of magnitude 1.

@node Eigenvalue and Eigenvector References
@section References and Further Reading

Further information on the algorithms described in this section can be
found in the following book,

@itemize @w{}
@item
G. H. Golub, C. F. Van Loan, @cite{Matrix Computations} (3rd Ed, 1996),
Johns Hopkins University Press, ISBN 0-8018-5414-8.
@end itemize

@noindent
Further information on the generalized eigensystems QZ algorithm
can be found in this paper,

@itemize @w{}
@item
C. Moler, G. Stewart, ``An Algorithm for Generalized Matrix Eigenvalue
Problems'', SIAM J. Numer. Anal., Vol 10, No 2, 1973.
@end itemize

@noindent
@cindex LAPACK
Eigensystem routines for very large matrices can be found in the
Fortran library @sc{lapack}. The @sc{lapack} library is described in,

@itemize @w{}
@item
@cite{LAPACK Users' Guide} (Third Edition, 1999), Published by SIAM,
ISBN 0-89871-447-8.

@uref{http://www.netlib.org/lapack} 
@end itemize

@noindent
The @sc{lapack} source code can be found at the website above along with
an online copy of the users guide.