File: fitting.texi

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (2050 lines) | stat: -rw-r--r-- 84,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
@cindex fitting
@cindex least squares fit
@cindex regression, least squares
@cindex weighted linear fits
@cindex unweighted linear fits
This chapter describes routines for performing least squares fits to
experimental data using linear combinations of functions.  The data
may be weighted or unweighted, i.e. with known or unknown errors.  For
weighted data the functions compute the best fit parameters and their
associated covariance matrix.  For unweighted data the covariance
matrix is estimated from the scatter of the points, giving a
variance-covariance matrix.

The functions are divided into separate versions for simple one- or
two-parameter regression and multiple-parameter fits.

@menu
* Fitting Overview::            
* Linear regression::           
* Multi-parameter regression::
* Regularized regression::
* Robust linear regression::
* Large Dense Linear Systems::
* Troubleshooting::
* Fitting Examples::
* Fitting References and Further Reading::  
@end menu

@node Fitting Overview
@section Overview

Least-squares fits are found by minimizing @math{\chi^2}
(chi-squared), the weighted sum of squared residuals over @math{n}
experimental datapoints @math{(x_i, y_i)} for the model @math{Y(c,x)},
@tex
\beforedisplay
$$
\chi^2 = \sum_i w_i (y_i - Y(c, x_i))^2
$$
\afterdisplay
@end tex
@ifinfo

@example
\chi^2 = \sum_i w_i (y_i - Y(c, x_i))^2
@end example

@end ifinfo
@noindent
The @math{p} parameters of the model are @c{$c = \{c_0, c_1, \dots\}$}
@math{c = @{c_0, c_1, @dots{}@}}.  The
weight factors @math{w_i} are given by @math{w_i = 1/\sigma_i^2},
where @math{\sigma_i} is the experimental error on the data-point
@math{y_i}.  The errors are assumed to be
Gaussian and uncorrelated. 
For unweighted data the chi-squared sum is computed without any weight factors. 

The fitting routines return the best-fit parameters @math{c} and their
@math{p \times p} covariance matrix.  The covariance matrix measures the
statistical errors on the best-fit parameters resulting from the 
errors on the data, @math{\sigma_i}, and is defined
@cindex covariance matrix, linear fits
as @c{$C_{ab} = \langle \delta c_a \delta c_b \rangle$}
@math{C_@{ab@} = <\delta c_a \delta c_b>} where @c{$\langle \, \rangle$}
@math{< >} denotes an average over the Gaussian error distributions of the underlying datapoints.

The covariance matrix is calculated by error propagation from the data
errors @math{\sigma_i}.  The change in a fitted parameter @math{\delta
c_a} caused by a small change in the data @math{\delta y_i} is given
by
@tex
\beforedisplay
$$
\delta c_a = \sum_i {\partial c_a \over \partial y_i} \delta y_i
$$
\afterdisplay
@end tex
@ifinfo

@example
\delta c_a = \sum_i (dc_a/dy_i) \delta y_i
@end example

@end ifinfo
@noindent
allowing the covariance matrix to be written in terms of the errors on the data,
@tex
\beforedisplay
$$
C_{ab} =  \sum_{i,j} {\partial c_a \over \partial y_i}
                     {\partial c_b \over \partial y_j} 
                     \langle \delta y_i \delta y_j \rangle
$$
\afterdisplay
@end tex
@ifinfo

@example
C_@{ab@} = \sum_@{i,j@} (dc_a/dy_i) (dc_b/dy_j) <\delta y_i \delta y_j>
@end example

@end ifinfo
@noindent
For uncorrelated data the fluctuations of the underlying datapoints satisfy
@c{$\langle \delta y_i \delta y_j \rangle = \sigma_i^2 \delta_{ij}$}
@math{<\delta y_i \delta y_j> = \sigma_i^2 \delta_@{ij@}}, giving a 
corresponding parameter covariance matrix of
@tex
\beforedisplay
$$
C_{ab} = \sum_{i} {1 \over w_i} {\partial c_a \over \partial y_i} {\partial c_b \over \partial y_i} 
$$
\afterdisplay
@end tex
@ifinfo

@example
C_@{ab@} = \sum_i (1/w_i) (dc_a/dy_i) (dc_b/dy_i) 
@end example

@end ifinfo
@noindent
When computing the covariance matrix for unweighted data, i.e. data with unknown errors, 
the weight factors @math{w_i} in this sum are replaced by the single estimate @math{w =
1/\sigma^2}, where @math{\sigma^2} is the computed variance of the
residuals about the best-fit model, @math{\sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p)}.  
This is referred to as the @dfn{variance-covariance matrix}.
@cindex variance-covariance matrix, linear fits

The standard deviations of the best-fit parameters are given by the
square root of the corresponding diagonal elements of
the covariance matrix, @c{$\sigma_{c_a} = \sqrt{C_{aa}}$}
@math{\sigma_@{c_a@} = \sqrt@{C_@{aa@}@}}.
The correlation coefficient of the fit parameters @math{c_a} and @math{c_b}
is given by @c{$\rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}$}
@math{\rho_@{ab@} = C_@{ab@} / \sqrt@{C_@{aa@} C_@{bb@}@}}.

@node   Linear regression
@section Linear regression
@cindex linear regression

The functions in this section are used to fit simple one or two
parameter linear regression models. The functions are declared in
the header file @file{gsl_fit.h}.

@menu
* Linear regression with a constant term::
* Linear regression without a constant term::
@end menu

@node Linear regression with a constant term
@subsection Linear regression with a constant term
The functions described in this section can be used to perform
least-squares fits to a straight line model, @math{Y(c,x) = c_0 + c_1 x}.

@cindex covariance matrix, from linear regression
@deftypefun int gsl_fit_linear (const double * @var{x}, const size_t @var{xstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c0}, double * @var{c1}, double * @var{cov00}, double * @var{cov01}, double * @var{cov11}, double * @var{sumsq})
This function computes the best-fit linear regression coefficients
(@var{c0},@var{c1}) of the model @math{Y = c_0 + c_1 X} for the dataset
(@var{x}, @var{y}), two vectors of length @var{n} with strides
@var{xstride} and @var{ystride}.  The errors on @var{y} are assumed unknown so 
the variance-covariance matrix for the
parameters (@var{c0}, @var{c1}) is estimated from the scatter of the
points around the best-fit line and returned via the parameters
(@var{cov00}, @var{cov01}, @var{cov11}).   
The sum of squares of the residuals from the best-fit line is returned
in @var{sumsq}.  Note: the correlation coefficient of the data can be computed using @code{gsl_stats_correlation} (@pxref{Correlation}), it does not depend on the fit.
@end deftypefun

@deftypefun int gsl_fit_wlinear (const double * @var{x}, const size_t @var{xstride}, const double * @var{w}, const size_t @var{wstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c0}, double * @var{c1}, double * @var{cov00}, double * @var{cov01}, double * @var{cov11}, double * @var{chisq})
This function computes the best-fit linear regression coefficients
(@var{c0},@var{c1}) of the model @math{Y = c_0 + c_1 X} for the weighted
dataset (@var{x}, @var{y}), two vectors of length @var{n} with strides
@var{xstride} and @var{ystride}.  The vector @var{w}, of length @var{n}
and stride @var{wstride}, specifies the weight of each datapoint. The
weight is the reciprocal of the variance for each datapoint in @var{y}.

The covariance matrix for the parameters (@var{c0}, @var{c1}) is
computed using the weights and returned via the parameters
(@var{cov00}, @var{cov01}, @var{cov11}).  The weighted sum of squares
of the residuals from the best-fit line, @math{\chi^2}, is returned in
@var{chisq}.
@end deftypefun

@deftypefun int gsl_fit_linear_est (double @var{x}, double @var{c0}, double @var{c1}, double @var{cov00}, double @var{cov01}, double @var{cov11}, double * @var{y}, double * @var{y_err})
This function uses the best-fit linear regression coefficients
@var{c0}, @var{c1} and their covariance
@var{cov00}, @var{cov01}, @var{cov11} to compute the fitted function
@var{y} and its standard deviation @var{y_err} for the model @math{Y =
c_0 + c_1 X} at the point @var{x}.
@end deftypefun

@node Linear regression without a constant term
@subsection Linear regression without a constant term

The functions described in this section can be used to perform
least-squares fits to a straight line model without a constant term,
@math{Y = c_1 X}.

@deftypefun int gsl_fit_mul (const double * @var{x}, const size_t @var{xstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c1}, double * @var{cov11}, double * @var{sumsq})
This function computes the best-fit linear regression coefficient
@var{c1} of the model @math{Y = c_1 X} for the datasets (@var{x},
@var{y}), two vectors of length @var{n} with strides @var{xstride} and
@var{ystride}.  The errors on @var{y} are assumed unknown so the 
variance of the parameter @var{c1} is estimated from
the scatter of the points around the best-fit line and returned via the
parameter @var{cov11}.  The sum of squares of the residuals from the
best-fit line is returned in @var{sumsq}.
@end deftypefun

@deftypefun int gsl_fit_wmul (const double * @var{x}, const size_t @var{xstride}, const double * @var{w}, const size_t @var{wstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c1}, double * @var{cov11}, double * @var{sumsq})
This function computes the best-fit linear regression coefficient
@var{c1} of the model @math{Y = c_1 X} for the weighted datasets
(@var{x}, @var{y}), two vectors of length @var{n} with strides
@var{xstride} and @var{ystride}.  The vector @var{w}, of length @var{n}
and stride @var{wstride}, specifies the weight of each datapoint. The
weight is the reciprocal of the variance for each datapoint in @var{y}.

The variance of the parameter @var{c1} is computed using the weights
and returned via the parameter @var{cov11}.  The weighted sum of
squares of the residuals from the best-fit line, @math{\chi^2}, is
returned in @var{chisq}.
@end deftypefun

@deftypefun int gsl_fit_mul_est (double @var{x}, double @var{c1}, double @var{cov11}, double * @var{y}, double * @var{y_err})
This function uses the best-fit linear regression coefficient @var{c1}
and its covariance @var{cov11} to compute the fitted function
@var{y} and its standard deviation @var{y_err} for the model @math{Y =
c_1 X} at the point @var{x}.
@end deftypefun

@node Multi-parameter regression
@section Multi-parameter regression
@cindex multi-parameter regression
@cindex fits, multi-parameter linear
This section describes routines which perform least squares fits
to a linear model by minimizing the cost function
@tex
\beforedisplay
$$
\chi^2 = \sum_i w_i (y_i - \sum_j X_{ij} c_j)^2 = || y - Xc ||_W^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = \sum_i w_i (y_i - \sum_j X_ij c_j)^2 = || y - Xc ||_W^2
@end example
@end ifinfo
where @math{y} is a vector of @math{n} observations, @math{X} is an
@math{n}-by-@math{p} matrix of predictor variables, @math{c}
is a vector of the @math{p} unknown best-fit parameters to be estimated,
and @math{||r||_W^2 = r^T W r}.
The matrix @math{W = } diag@math{(w_1,w_2,...,w_n)}
defines the weights or uncertainties of the observation vector.

This formulation can be used for fits to any number of functions and/or
variables by preparing the @math{n}-by-@math{p} matrix @math{X}
appropriately.  For example, to fit to a @math{p}-th order polynomial in
@var{x}, use the following matrix,
@tex
\beforedisplay
$$
X_{ij} = x_i^j
$$
\afterdisplay
@end tex
@ifinfo

@example
X_@{ij@} = x_i^j
@end example

@end ifinfo
@noindent
where the index @math{i} runs over the observations and the index
@math{j} runs from 0 to @math{p-1}.

To fit to a set of @math{p} sinusoidal functions with fixed frequencies
@math{\omega_1}, @math{\omega_2}, @dots{}, @math{\omega_p}, use,
@tex
\beforedisplay
$$
X_{ij} = \sin(\omega_j x_i)
$$
\afterdisplay
@end tex
@ifinfo

@example
X_@{ij@} = sin(\omega_j x_i)
@end example

@end ifinfo
@noindent
To fit to @math{p} independent variables @math{x_1}, @math{x_2}, @dots{},
@math{x_p}, use,
@tex
\beforedisplay
$$
X_{ij} = x_j(i)
$$
\afterdisplay
@end tex
@ifinfo

@example
X_@{ij@} = x_j(i)
@end example

@end ifinfo
@noindent
where @math{x_j(i)} is the @math{i}-th value of the predictor variable
@math{x_j}.

The solution of the general linear least-squares system requires an
additional working space for intermediate results, such as the singular
value decomposition of the matrix @math{X}.

These functions are declared in the header file @file{gsl_multifit.h}.

@deftypefun {gsl_multifit_linear_workspace *} gsl_multifit_linear_alloc (const size_t @var{n}, const size_t @var{p})
@tindex gsl_multifit_linear_workspace
This function allocates a workspace for fitting a model to a maximum of @var{n}
observations using a maximum of @var{p} parameters. The user may later supply
a smaller least squares system if desired. The size of the workspace is
@math{O(np + p^2)}.
@end deftypefun

@deftypefun void gsl_multifit_linear_free (gsl_multifit_linear_workspace * @var{work})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_multifit_linear_svd (const gsl_matrix * @var{X}, gsl_multifit_linear_workspace * @var{work})
This function performs a singular value decomposition of the
matrix @var{X} and stores the SVD factors internally in @var{work}.
@end deftypefun

@deftypefun int gsl_multifit_linear_bsvd (const gsl_matrix * @var{X}, gsl_multifit_linear_workspace * @var{work})
This function performs a singular value decomposition of the
matrix @var{X} and stores the SVD factors internally in @var{work}.
The matrix @var{X} is first balanced by applying column scaling
factors to improve the accuracy of the singular values.
@end deftypefun

@deftypefun int gsl_multifit_linear (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work})
This function computes the best-fit parameters @var{c} of the model
@math{y = X c} for the observations @var{y} and the matrix of
predictor variables @var{X}, using the preallocated workspace provided
in @var{work}.  The @math{p}-by-@math{p} variance-covariance matrix of the model parameters
@var{cov} is set to @math{\sigma^2 (X^T X)^{-1}}, where @math{\sigma} is
the standard deviation of the fit residuals.
The sum of squares of the residuals from the best-fit,
@math{\chi^2}, is returned in @var{chisq}. If the coefficient of
determination is desired, it can be computed from the expression
@math{R^2 = 1 - \chi^2 / TSS}, where the total sum of squares (TSS) of
the observations @var{y} may be computed from @code{gsl_stats_tss}.

The best-fit is found by singular value decomposition of the matrix
@var{X} using the modified Golub-Reinsch SVD algorithm, with column
scaling to improve the accuracy of the singular values. Any components
which have zero singular value (to machine precision) are discarded
from the fit.
@end deftypefun

@deftypefun int gsl_multifit_linear_tsvd (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, const double @var{tol}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, size_t * @var{rank}, gsl_multifit_linear_workspace * @var{work})
This function computes the best-fit parameters @var{c} of the model
@math{y = X c} for the observations @var{y} and the matrix of
predictor variables @var{X}, using a truncated SVD expansion.
Singular values which satisfy @math{s_i \le tol \times s_0}
are discarded from the fit, where @math{s_0} is the largest singular value.
The @math{p}-by-@math{p} variance-covariance matrix of the model parameters
@var{cov} is set to @math{\sigma^2 (X^T X)^{-1}}, where @math{\sigma} is
the standard deviation of the fit residuals.
The sum of squares of the residuals from the best-fit,
@math{\chi^2}, is returned in @var{chisq}. The effective rank
(number of singular values used in solution) is returned in @var{rank}.
If the coefficient of
determination is desired, it can be computed from the expression
@math{R^2 = 1 - \chi^2 / TSS}, where the total sum of squares (TSS) of
the observations @var{y} may be computed from @code{gsl_stats_tss}.
@end deftypefun

@deftypefun int gsl_multifit_wlinear (const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work})
This function computes the best-fit parameters @var{c} of the weighted
model @math{y = X c} for the observations @var{y} with weights @var{w}
and the matrix of predictor variables @var{X}, using the preallocated
workspace provided in @var{work}.  The @math{p}-by-@math{p} covariance matrix of the model
parameters @var{cov} is computed as @math{(X^T W X)^{-1}}. The weighted
sum of squares of the residuals from the best-fit, @math{\chi^2}, is
returned in @var{chisq}. If the coefficient of determination is
desired, it can be computed from the expression @math{R^2 = 1 - \chi^2
/ WTSS}, where the weighted total sum of squares (WTSS) of the
observations @var{y} may be computed from @code{gsl_stats_wtss}.
@end deftypefun

@deftypefun int gsl_multifit_wlinear_tsvd (const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, const double @var{tol}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, size_t * @var{rank}, gsl_multifit_linear_workspace * @var{work})
This function computes the best-fit parameters @var{c} of the weighted
model @math{y = X c} for the observations @var{y} with weights @var{w}
and the matrix of predictor variables @var{X}, using a truncated SVD expansion.
Singular values which satisfy @math{s_i \le tol \times s_0}
are discarded from the fit, where @math{s_0} is the largest singular value.
The @math{p}-by-@math{p} covariance matrix of the model
parameters @var{cov} is computed as @math{(X^T W X)^{-1}}. The weighted
sum of squares of the residuals from the best-fit, @math{\chi^2}, is
returned in @var{chisq}. The effective rank of the system (number of
singular values used in the solution) is returned in @var{rank}.
If the coefficient of determination is
desired, it can be computed from the expression @math{R^2 = 1 - \chi^2
/ WTSS}, where the weighted total sum of squares (WTSS) of the
observations @var{y} may be computed from @code{gsl_stats_wtss}.
@end deftypefun

@deftypefun int gsl_multifit_linear_est (const gsl_vector * @var{x}, const gsl_vector * @var{c}, const gsl_matrix * @var{cov}, double * @var{y}, double * @var{y_err})
This function uses the best-fit multilinear regression coefficients
@var{c} and their covariance matrix
@var{cov} to compute the fitted function value
@var{y} and its standard deviation @var{y_err} for the model @math{y = x.c} 
at the point @var{x}.
@end deftypefun

@deftypefun int gsl_multifit_linear_residuals (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, const gsl_vector * @var{c}, gsl_vector * @var{r})
This function computes the vector of residuals @math{r = y - X c} for
the observations @var{y}, coefficients @var{c} and matrix of predictor
variables @var{X}.
@end deftypefun

@deftypefun size_t gsl_multifit_linear_rank (const double @var{tol}, const gsl_multifit_linear_workspace * @var{work})
This function returns the rank of the matrix @math{X} which must first have its
singular value decomposition computed. The rank is computed by counting the number
of singular values @math{\sigma_j} which satisfy @math{\sigma_j > tol \times \sigma_0},
where @math{\sigma_0} is the largest singular value.
@end deftypefun

@node Regularized regression
@section Regularized regression
@cindex ridge regression
@cindex Tikhonov regression
@cindex regression, ridge
@cindex regression, Tikhonov
@cindex least squares, regularized

Ordinary weighted least squares models seek a solution vector @math{c}
which minimizes the residual
@tex
\beforedisplay
$$
\chi^2 = || y - Xc ||_W^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = || y - Xc ||_W^2
@end example
@end ifinfo
where @math{y} is the @math{n}-by-@math{1} observation vector,
@math{X} is the @math{n}-by-@math{p} design matrix, @math{c} is
the @math{p}-by-@math{1} solution vector,
@math{W =} diag@math{(w_1,...,w_n)} is the data weighting matrix,
and @math{||r||_W^2 = r^T W r}.
In cases where the least squares matrix @math{X} is ill-conditioned,
small perturbations (ie: noise) in the observation vector could lead to
widely different solution vectors @math{c}.
One way of dealing with ill-conditioned matrices is to use a ``truncated SVD''
in which small singular values, below some given tolerance, are discarded
from the solution. The truncated SVD method is available using the functions
@code{gsl_multifit_linear_tsvd} and @code{gsl_multifit_wlinear_tsvd}. Another way
to help solve ill-posed problems is to include a regularization term in the least squares
minimization
@tex
\beforedisplay
$$
\chi^2 = || y - Xc ||_W^2 + \lambda^2 || L c ||^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = || y - Xc ||_W^2 + \lambda^2 || L c ||^2
@end example
@end ifinfo
for a suitably chosen regularization parameter @math{\lambda} and
matrix @math{L}. This type of regularization is known as Tikhonov, or ridge,
regression. In some applications, @math{L} is chosen as the identity matrix, giving
preference to solution vectors @math{c} with smaller norms.
Including this regularization term leads to the explicit ``normal equations'' solution
@tex
\beforedisplay
$$
c = \left( X^T W X + \lambda^2 L^T L \right)^{-1} X^T W y
$$
\afterdisplay
@end tex
@ifinfo
@example
c = ( X^T W X + \lambda^2 L^T L )^-1 X^T W y
@end example
@end ifinfo
which reduces to the ordinary least squares solution when @math{L = 0}.
In practice, it is often advantageous to transform a regularized least
squares system into the form
@tex
\beforedisplay
$$
\chi^2 = || \tilde{y} - \tilde{X} \tilde{c} ||^2 + \lambda^2 || \tilde{c} ||^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = || y~ - X~ c~ ||^2 + \lambda^2 || c~ ||^2
@end example
@end ifinfo
This is known as the Tikhonov ``standard form'' and has the normal equations solution
@math{\tilde{c} = \left( \tilde{X}^T \tilde{X} + \lambda^2 I \right)^{-1} \tilde{X}^T \tilde{y}}.
For an @math{m}-by-@math{p} matrix @math{L} which is full rank and has @math{m >= p} (ie: @math{L} is
square or has more rows than columns), we can calculate the ``thin'' QR decomposition of @math{L}, and
note that @math{||L c||} = @math{||R c||} since the @math{Q} factor will not change the norm. Since
@math{R} is @math{p}-by-@math{p}, we can then use the transformation
@tex
\beforedisplay
$$
\eqalign{
\tilde{X} &= W^{1 \over 2} X R^{-1} \cr
\tilde{y} &= W^{1 \over 2} y \cr
\tilde{c} &= R c
}
$$
\afterdisplay
@end tex
@ifinfo
@example
X~ = sqrt(W) X R^-1
y~ = sqrt(W) y
c~ = R c
@end example
@end ifinfo
to achieve the standard form. For a rectangular matrix @math{L} with @math{m < p},
a more sophisticated approach is needed (see Hansen 1998, chapter 2.3).
In practice, the normal equations solution above is not desirable due to
numerical instabilities, and so the system is solved using the
singular value decomposition of the matrix @math{\tilde{X}}.
The matrix @math{L} is often chosen as the identity matrix, or as a first
or second finite difference operator, to ensure a smoothly varying
coefficient vector @math{c}, or as a diagonal matrix to selectively damp
each model parameter differently. If @math{L \ne I}, the user must first
convert the least squares problem to standard form using
@code{gsl_multifit_linear_stdform1} or @code{gsl_multifit_linear_stdform2},
solve the system, and then backtransform the solution vector to recover
the solution of the original problem (see
@code{gsl_multifit_linear_genform1} and @code{gsl_multifit_linear_genform2}).

In many regularization problems, care must be taken when choosing
the regularization parameter @math{\lambda}. Since both the
residual norm @math{||y - X c||} and solution norm @math{||L c||}
are being minimized, the parameter @math{\lambda} represents
a tradeoff between minimizing either the residuals or the
solution vector. A common tool for visualizing the comprimise between
the minimization of these two quantities is known as the L-curve.
The L-curve is a log-log plot of the residual norm @math{||y - X c||}
on the horizontal axis and the solution norm @math{||L c||} on the
vertical axis. This curve nearly always as an @math{L} shaped
appearance, with a distinct corner separating the horizontal
and vertical sections of the curve. The regularization parameter
corresponding to this corner is often chosen as the optimal
value. GSL provides routines to calculate the L-curve for all
relevant regularization parameters as well as locating the corner.

Another method of choosing the regularization parameter is known
as Generalized Cross Validation (GCV). This method is based on
the idea that if an arbitrary element @math{y_i} is left out of the
right hand side, the resulting regularized solution should predict this element
accurately. This leads to choosing the parameter @math{\lambda}
which minimizes the GCV function
@tex
\beforedisplay
$$
G(\lambda) = {||y - X c_{\lambda}||^2 \over \textrm{Tr}(I_n - X X_{\lambda}^I)^2}
$$
\afterdisplay
@end tex
@ifinfo

@example
G(\lambda) = (||y - X c_@{\lambda@}||^2) / Tr(I_n - X X^I)^2
@end example

@end ifinfo
where @math{X_{\lambda}^I} is the matrix which relates the solution @math{c_{\lambda}}
to the right hand side @math{y}, ie: @math{c_{\lambda} = X_{\lambda}^I y}. GSL
provides routines to compute the GCV curve and its minimum.

@noindent
For most applications, the steps required to solve a regularized least
squares problem are as follows:

@enumerate

@item Construct the least squares system (@math{X}, @math{y}, @math{W}, @math{L})

@item Transform the system to standard form (@math{\tilde{X}},@math{\tilde{y}}). This
step can be skipped if @math{L = I_p} and @math{W = I_n}.

@item Calculate the SVD of @math{\tilde{X}}.

@item Determine an appropriate regularization parameter @math{\lambda} (using for example
L-curve or GCV analysis).

@item Solve the standard form system using the chosen @math{\lambda} and the SVD of @math{\tilde{X}}.

@item Backtransform the standard form solution @math{\tilde{c}} to recover the
original solution vector @math{c}.

@end enumerate

@deftypefun int gsl_multifit_linear_stdform1 (const gsl_vector * @var{L}, const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_multifit_linear_workspace * @var{work})
@deftypefunx int gsl_multifit_linear_wstdform1 (const gsl_vector * @var{L}, const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_multifit_linear_workspace * @var{work})
These functions define a regularization matrix
@math{L =} diag@math{(l_0,l_1,...,l_{p-1})}.
The diagonal matrix element @math{l_i} is provided by the
@math{i}th element of the input vector @var{L}.
The @math{n}-by-@math{p} least squares matrix @var{X} and
vector @var{y} of length @math{n} are then
converted to standard form as described above and the parameters
(@math{\tilde{X}},@math{\tilde{y}}) are stored in @var{Xs} and @var{ys}
on output.  @var{Xs} and @var{ys} have the same dimensions as
@var{X} and @var{y}. Optional data weights may be supplied in the
vector @var{w} of length @math{n}. In order to apply this transformation,
@math{L^{-1}} must exist and so none of the @math{l_i}
may be zero. After the standard form system has been solved,
use @code{gsl_multifit_linear_genform1} to recover the original solution vector.
It is allowed to have @var{X} = @var{Xs} and @var{y} = @var{ys} for an in-place transform.
In order to perform a weighted regularized fit with @math{L = I}, the user may
call @code{gsl_multifit_linear_applyW} to convert to standard form.
@end deftypefun

@deftypefun int gsl_multifit_linear_L_decomp (gsl_matrix * @var{L}, gsl_vector * @var{tau})
This function factors the @math{m}-by-@math{p} regularization matrix
@var{L} into a form needed for the later transformation to standard form. @var{L}
may have any number of rows @math{m}. If @math{m \ge p} the QR decomposition of
@var{L} is computed and stored in @var{L} on output. If @math{m < p}, the QR decomposition
of @math{L^T} is computed and stored in @var{L} on output. On output,
the Householder scalars are stored in the vector @var{tau} of size @math{MIN(m,p)}.
These outputs will be used by @code{gsl_multifit_linear_wstdform2} to complete the
transformation to standard form.
@end deftypefun

@deftypefun int gsl_multifit_linear_stdform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_matrix * @var{M}, gsl_multifit_linear_workspace * @var{work})
@deftypefunx int gsl_multifit_linear_wstdform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_matrix * @var{M}, gsl_multifit_linear_workspace * @var{work})
These functions convert the least squares system (@var{X},@var{y},@var{W},@math{L}) to standard
form (@math{\tilde{X}},@math{\tilde{y}}) which are stored in @var{Xs} and @var{ys}
respectively. The @math{m}-by-@math{p} regularization matrix @var{L} is specified by the inputs
@var{LQR} and @var{Ltau}, which are outputs from @code{gsl_multifit_linear_L_decomp}.
The dimensions of the standard form parameters (@math{\tilde{X}},@math{\tilde{y}})
depend on whether @math{m} is larger or less than @math{p}. For @math{m \ge p},
@var{Xs} is @math{n}-by-@math{p}, @var{ys} is @math{n}-by-1, and @var{M} is
not used. For @math{m < p}, @var{Xs} is @math{(n - p + m)}-by-@math{m},
@var{ys} is @math{(n - p + m)}-by-1, and @var{M} is additional @math{n}-by-@math{p} workspace,
which is required to recover the original solution vector after the system has been
solved (see @code{gsl_multifit_linear_genform2}). Optional data weights may be supplied in the
vector @var{w} of length @math{n}, where @math{W =} diag(w).
@end deftypefun

@deftypefun int gsl_multifit_linear_solve (const double @var{lambda}, const gsl_matrix * @var{Xs}, const gsl_vector * @var{ys}, gsl_vector * @var{cs}, double * @var{rnorm}, double * @var{snorm}, gsl_multifit_linear_workspace * @var{work})
This function computes the regularized best-fit parameters @math{\tilde{c}}
which minimize the cost function
@math{\chi^2 = || \tilde{y} - \tilde{X} \tilde{c} ||^2 + \lambda^2 || \tilde{c} ||^2} which is
in standard form. The least squares system must therefore be converted
to standard form prior to calling this function.
The observation vector @math{\tilde{y}} is provided in @var{ys} and the matrix of
predictor variables @math{\tilde{X}} in @var{Xs}. The solution vector @math{\tilde{c}} is
returned in @var{cs}, which has length min(@math{m,p}). The SVD of @var{Xs} must be computed prior
to calling this function, using @code{gsl_multifit_linear_svd}.
The regularization parameter @math{\lambda} is provided in @var{lambda}.
The residual norm @math{|| \tilde{y} - \tilde{X} \tilde{c} || = ||y - X c||_W} is returned in @var{rnorm}.
The solution norm @math{|| \tilde{c} || = ||L c||} is returned in
@var{snorm}.
@end deftypefun

@deftypefun int gsl_multifit_linear_genform1 (const gsl_vector * @var{L}, const gsl_vector * @var{cs}, gsl_vector * @var{c}, gsl_multifit_linear_workspace * @var{work})
After a regularized system has been solved with
@math{L =} diag@math{(\l_0,\l_1,...,\l_{p-1})},
this function backtransforms the standard form solution vector @var{cs}
to recover the solution vector of the original problem @var{c}. The
diagonal matrix elements @math{l_i} are provided in
the vector @var{L}. It is allowed to have @var{c} = @var{cs} for an
in-place transform.
@end deftypefun

@deftypefun int gsl_multifit_linear_genform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_matrix * @var{X}, const gsl_vector * @var{y}, const gsl_vector * @var{cs}, const gsl_matrix * @var{M}, gsl_vector * @var{c}, gsl_multifit_linear_workspace * @var{work})
@deftypefunx int gsl_multifit_linear_wgenform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, const gsl_vector * @var{cs}, const gsl_matrix * @var{M}, gsl_vector * @var{c}, gsl_multifit_linear_workspace * @var{work})
After a regularized system has been solved with a general rectangular matrix @math{L},
specified by (@var{LQR},@var{Ltau}), this function backtransforms the standard form solution @var{cs}
to recover the solution vector of the original problem, which is stored in @var{c},
of length @math{p}. The original least squares matrix and observation vector are provided in
@var{X} and @var{y} respectively. @var{M} is the matrix computed by
@code{gsl_multifit_linear_stdform2}. For weighted fits, the weight vector
@var{w} must also be supplied.
@end deftypefun

@deftypefun int gsl_multifit_linear_applyW (const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_matrix * @var{WX}, gsl_vector * @var{Wy})
For weighted least squares systems with @math{L = I}, this function may be used to
convert the system to standard form by applying the weight matrix @math{W =} diag(@var{w})
to the least squares matrix @var{X} and observation vector @var{y}. On output, @var{WX}
is equal to @math{W^{1/2} X} and @var{Wy} is equal to @math{W^{1/2} y}. It is allowed
for @var{WX} = @var{X} and @var{Wy} = @var{y} for an in-place transform.
@end deftypefun

@deftypefun int gsl_multifit_linear_lcurve (const gsl_vector * @var{y}, gsl_vector * @var{reg_param}, gsl_vector * @var{rho}, gsl_vector * @var{eta}, gsl_multifit_linear_workspace * @var{work})
This function computes the L-curve for a least squares system
using the right hand side vector @var{y} and the SVD decomposition
of the least squares matrix @var{X}, which must be provided
to @code{gsl_multifit_linear_svd} prior to
calling this function. The output vectors @var{reg_param},
@var{rho}, and @var{eta} must all be the same size, and will
contain the regularization parameters @math{\lambda_i}, residual norms
@math{||y - X c_i||}, and solution norms @math{|| L c_i ||}
which compose the L-curve, where @math{c_i} is the regularized
solution vector corresponding to @math{\lambda_i}.
The user may determine the number of points on the L-curve by
adjusting the size of these input arrays. The regularization
parameters @math{\lambda_i} are estimated from the singular values
of @var{X}, and chosen to represent the most relevant portion of
the L-curve.
@end deftypefun

@deftypefun int gsl_multifit_linear_lcorner (const gsl_vector * @var{rho}, const gsl_vector * @var{eta}, size_t * @var{idx})
This function attempts to locate the corner of the L-curve
@math{(||y - X c||, ||L c||)} defined by the @var{rho} and @var{eta}
input arrays respectively. The corner is defined as the point of maximum
curvature of the L-curve in log-log scale. The @var{rho} and @var{eta}
arrays can be outputs of @code{gsl_multifit_linear_lcurve}. The
algorithm used simply fits a circle to 3 consecutive points on the L-curve
and uses the circle's radius to determine the curvature at
the middle point. Therefore, the input array sizes must be
@math{\ge 3}. With more points provided for the L-curve, a better
estimate of the curvature can be obtained. The array index
corresponding to maximum curvature (ie: the corner) is returned
in @var{idx}. If the input arrays contain colinear points,
this function could fail and return @code{GSL_EINVAL}.
@end deftypefun

@deftypefun int gsl_multifit_linear_lcorner2 (const gsl_vector * @var{reg_param}, const gsl_vector * @var{eta}, size_t * @var{idx})
This function attempts to locate the corner of an alternate L-curve
@math{(\lambda^2, ||L c||^2)} studied by Rezghi and Hosseini, 2009.
This alternate L-curve can provide better estimates of the
regularization parameter for smooth solution vectors. The regularization
parameters @math{\lambda} and solution norms @math{||L c||} are provided
in the @var{reg_param} and @var{eta} input arrays respectively. The
corner is defined as the point of maximum curvature of this
alternate L-curve in linear scale. The @var{reg_param} and @var{eta}
arrays can be outputs of @code{gsl_multifit_linear_lcurve}. The
algorithm used simply fits a circle to 3 consecutive points on the L-curve
and uses the circle's radius to determine the curvature at
the middle point. Therefore, the input array sizes must be
@math{\ge 3}. With more points provided for the L-curve, a better
estimate of the curvature can be obtained. The array index
corresponding to maximum curvature (ie: the corner) is returned
in @var{idx}. If the input arrays contain colinear points,
this function could fail and return @code{GSL_EINVAL}.
@end deftypefun

@deftypefun int gsl_multifit_linear_gcv_init(const gsl_vector * @var{y}, gsl_vector * @var{reg_param}, gsl_vector * @var{UTy}, double * @var{delta0}, gsl_multifit_linear_workspace * @var{work})
This function performs some initialization in preparation for computing
the GCV curve and its minimum. The right hand side vector is provided
in @var{y}. On output, @var{reg_param} is set to a vector of regularization
parameters in decreasing order and may be of any size. The vector
@var{UTy} of size @math{p} is set to @math{U^T y}. The parameter
@var{delta0} is needed for subsequent steps of the GCV calculation.
@end deftypefun

@deftypefun int gsl_multifit_linear_gcv_curve(const gsl_vector * @var{reg_param}, const gsl_vector * @var{UTy}, const double @var{delta0}, gsl_vector * @var{G}, gsl_multifit_linear_workspace * @var{work})
This funtion calculates the GCV curve @math{G(\lambda)} and stores it in
@var{G} on output, which must be the same size as @var{reg_param}. The
inputs @var{reg_param}, @var{UTy} and @var{delta0} are computed in
@code{gsl_multifit_linear_gcv_init}.
@end deftypefun

@deftypefun int gsl_multifit_linear_gcv_min(const gsl_vector * @var{reg_param}, const gsl_vector * @var{UTy}, const gsl_vector * @var{G}, const double @var{delta0}, double * @var{lambda}, gsl_multifit_linear_workspace * @var{work})
This function computes the value of the regularization parameter
which minimizes the GCV curve @math{G(\lambda)} and stores it in
@var{lambda}. The input @var{G} is calculated by
@code{gsl_multifit_linear_gcv_curve} and the inputs
@var{reg_param}, @var{UTy} and @var{delta0} are computed by
@code{gsl_multifit_linear_gcv_init}.
@end deftypefun

@deftypefun double gsl_multifit_linear_gcv_calc(const double @var{lambda}, const gsl_vector * @var{UTy}, const double @var{delta0}, gsl_multifit_linear_workspace * @var{work})
This function returns the value of the GCV curve @math{G(\lambda)} corresponding
to the input @var{lambda}.
@end deftypefun

@deftypefun int gsl_multifit_linear_gcv(const gsl_vector * @var{y}, gsl_vector * @var{reg_param}, gsl_vector * @var{G}, double * @var{lambda}, double * @var{G_lambda}, gsl_multifit_linear_workspace * @var{work})
This function combines the steps @code{gcv_init}, @code{gcv_curve},
and @code{gcv_min} defined above into a single function. The input
@var{y} is the right hand side vector. On output, @var{reg_param} and
@var{G}, which must be the same size, are set to vectors of
@math{\lambda} and @math{G(\lambda)} values respectively. The
output @var{lambda} is set to the optimal value of @math{\lambda}
which minimizes the GCV curve. The minimum value of the GCV curve is
returned in @var{G_lambda}.
@end deftypefun

@deftypefun int gsl_multifit_linear_Lk (const size_t @var{p}, const size_t @var{k}, gsl_matrix * @var{L})
This function computes the discrete approximation to the derivative operator @math{L_k} of
order @var{k} on a regular grid of @var{p} points and stores it in @var{L}. The dimensions of @var{L} are
@math{(p-k)}-by-@math{p}.
@end deftypefun

@deftypefun int gsl_multifit_linear_Lsobolev (const size_t @var{p}, const size_t @var{kmax}, const gsl_vector * @var{alpha}, gsl_matrix * @var{L}, gsl_multifit_linear_workspace * @var{work})
This function computes the regularization matrix @var{L} corresponding to the weighted Sobolov norm
@math{||L c||^2 = \sum_k \alpha_k^2 ||L_k c||^2} where @math{L_k} approximates the derivative
operator of order @math{k}. This regularization norm can be useful in applications where
it is necessary to smooth several derivatives of the solution. @var{p} is the number of
model parameters, @var{kmax} is the highest derivative to include in the summation above, and
@var{alpha} is the vector of weights of size @var{kmax} + 1, where @var{alpha}[k] = @math{\alpha_k}
is the weight assigned to the derivative of order @math{k}.  The output matrix @var{L} is size
@var{p}-by-@var{p} and upper triangular.
@end deftypefun

@deftypefun double gsl_multifit_linear_rcond (const gsl_multifit_linear_workspace * @var{work})
This function returns the reciprocal condition number of the least squares matrix @math{X},
defined as the ratio of the smallest and largest singular values, rcond = @math{\sigma_{min}/\sigma_{max}}.
The routine @code{gsl_multifit_linear_svd} must first be called to compute the SVD of @math{X}.
@end deftypefun

@node Robust linear regression
@section Robust linear regression
@cindex robust regression
@cindex regression, robust
@cindex least squares, robust

Ordinary least squares (OLS) models are often heavily influenced by the presence of outliers.
Outliers are data points which do not follow the general trend of the other observations,
although there is strictly no precise definition of an outlier. Robust linear regression
refers to regression algorithms which are robust to outliers. The most common type of
robust regression is M-estimation. The general M-estimator minimizes the objective function
@tex
\beforedisplay
$$
\sum_i \rho(e_i) = \sum_i \rho (y_i - Y(c, x_i))
$$
\afterdisplay
@end tex
@ifinfo

@example
\sum_i \rho(e_i) = \sum_i \rho (y_i - Y(c, x_i))
@end example

@end ifinfo
where @math{e_i = y_i - Y(c, x_i)} is the residual of the ith data point, and
@math{\rho(e_i)} is a function which should have the following properties:
@itemize @w{}
@item @math{\rho(e) \ge 0}
@item @math{\rho(0) = 0}
@item @math{\rho(-e) = \rho(e)}
@item @math{\rho(e_1) > \rho(e_2)} for @math{|e_1| > |e_2|}
@end itemize
@noindent
The special case of ordinary least squares is given by @math{\rho(e_i) = e_i^2}.
Letting @math{\psi = \rho'} be the derivative of @math{\rho}, differentiating
the objective function with respect to the coefficients @math{c}
and setting the partial derivatives to zero produces the system of equations
@tex
\beforedisplay
$$
\sum_i \psi(e_i) X_i = 0
$$
\afterdisplay
@end tex
@ifinfo

@example
\sum_i \psi(e_i) X_i = 0
@end example

@end ifinfo
where @math{X_i} is a vector containing row @math{i} of the design matrix @math{X}.
Next, we define a weight function @math{w(e) = \psi(e)/e}, and let
@math{w_i = w(e_i)}:
@tex
\beforedisplay
$$
\sum_i w_i e_i X_i = 0
$$
\afterdisplay
@end tex
@ifinfo

@example
\sum_i w_i e_i X_i = 0
@end example

@end ifinfo
This system of equations is equivalent to solving a weighted ordinary least squares
problem, minimizing @math{\chi^2 = \sum_i w_i e_i^2}. The weights however, depend
on the residuals @math{e_i}, which depend on the coefficients @math{c}, which depend
on the weights. Therefore, an iterative solution is used, called Iteratively Reweighted
Least Squares (IRLS).
@enumerate
@item Compute initial estimates of the coefficients @math{c^{(0)}} using ordinary least squares

@item For iteration @math{k}, form the residuals @math{e_i^{(k)} = (y_i - X_i c^{(k-1)})/(t \sigma^{(k)} \sqrt{1 - h_i})},
where @math{t} is a tuning constant depending on the choice of @math{\psi}, and @math{h_i} are the
statistical leverages (diagonal elements of the matrix @math{X (X^T X)^{-1} X^T}). Including @math{t}
and @math{h_i} in the residual calculation has been shown to improve the convergence of the method.
The residual standard deviation is approximated as @math{\sigma^{(k)} = MAD / 0.6745}, where MAD is the
Median-Absolute-Deviation of the @math{n-p} largest residuals from the previous iteration.

@item Compute new weights @math{w_i^{(k)} = \psi(e_i^{(k)})/e_i^{(k)}}.

@item Compute new coefficients @math{c^{(k)}} by solving the weighted least squares problem with
weights @math{w_i^{(k)}}.

@item Steps 2 through 4 are iterated until the coefficients converge or until some maximum iteration
limit is reached. Coefficients are tested for convergence using the critera:
@tex
\beforedisplay
$$
|c_i^{(k)} - c_i^{(k-1)}| \le \epsilon \times \hbox{max}(|c_i^{(k)}|, |c_i^{(k-1)}|)
$$
\afterdisplay
@end tex
@ifinfo

@example
|c_i^(k) - c_i^(k-1)| \le \epsilon \times max(|c_i^(k)|, |c_i^(k-1)|)
@end example

@end ifinfo
for all @math{0 \le i < p} where @math{\epsilon} is a small tolerance factor.
@end enumerate
@noindent
The key to this method lies in selecting the function @math{\psi(e_i)} to assign
smaller weights to large residuals, and larger weights to smaller residuals. As
the iteration proceeds, outliers are assigned smaller and smaller weights, eventually
having very little or no effect on the fitted model.

@deftypefun {gsl_multifit_robust_workspace *} gsl_multifit_robust_alloc (const gsl_multifit_robust_type * @var{T}, const size_t @var{n}, const size_t @var{p})
@tindex gsl_multifit_robust_workspace
This function allocates a workspace for fitting a model to @var{n}
observations using @var{p} parameters. The size of the workspace
is @math{O(np + p^2)}. The type @var{T} specifies the
function @math{\psi} and can be selected from the following choices.
@deffn {Robust type} gsl_multifit_robust_default
This specifies the @code{gsl_multifit_robust_bisquare} type (see below) and is a good
general purpose choice for robust regression.
@end deffn

@deffn {Robust type} gsl_multifit_robust_bisquare
This is Tukey's biweight (bisquare) function and is a good general purpose choice for
robust regression. The weight function is given by
@tex
\beforedisplay
$$
w(e) = \left\{ \matrix{ (1 - e^2)^2, & |e| \le 1\cr
                        0, & |e| > 1} \right.
$$
\afterdisplay
@end tex
@ifinfo

@example
w(e) = (1 - e^2)^2
@end example

@end ifinfo
and the default tuning constant is @math{t = 4.685}.
@end deffn

@deffn {Robust type} gsl_multifit_robust_cauchy
This is Cauchy's function, also known as the Lorentzian function.
This function does not guarantee a unique solution,
meaning different choices of the coefficient vector @var{c}
could minimize the objective function. Therefore this option should
be used with care. The weight function is given by
@tex
\beforedisplay
$$
w(e) = {1 \over 1 + e^2}
$$
\afterdisplay
@end tex
@ifinfo

@example
w(e) = 1 / (1 + e^2)
@end example

@end ifinfo
and the default tuning constant is @math{t = 2.385}.
@end deffn

@deffn {Robust type} gsl_multifit_robust_fair
This is the fair @math{\rho} function, which guarantees a unique solution and
has continuous derivatives to three orders. The weight function is given by
@tex
\beforedisplay
$$
w(e) = {1 \over 1 + |e|}
$$
\afterdisplay
@end tex
@ifinfo

@example
w(e) = 1 / (1 + |e|)
@end example

@end ifinfo
and the default tuning constant is @math{t = 1.400}.
@end deffn

@deffn {Robust type} gsl_multifit_robust_huber
This specifies Huber's @math{\rho} function, which is a parabola in the vicinity of zero and
increases linearly for a given threshold @math{|e| > t}. This function is also considered
an excellent general purpose robust estimator, however, occasional difficulties can
be encountered due to the discontinuous first derivative of the @math{\psi} function.
The weight function is given by
@tex
\beforedisplay
$$
w(e) = \left\{ \matrix{ 1, & |e| \le 1\cr
                        {1 \over |e|}, & |e| > 1} \right.
$$
\afterdisplay
@end tex
@ifinfo

@example
w(e) = 1/max(1,|e|)
@end example

@end ifinfo
and the default tuning constant is @math{t = 1.345}.
@end deffn

@deffn {Robust type} gsl_multifit_robust_ols
This specifies the ordinary least squares solution, which can be useful for quickly
checking the difference between the various robust and OLS solutions. The weight function is given by
@tex
\beforedisplay
$$
w(e) = 1
$$
\afterdisplay
@end tex
@ifinfo

@example
w(e) = 1
@end example

@end ifinfo
and the default tuning constant is @math{t = 1}.
@end deffn

@deffn {Robust type} gsl_multifit_robust_welsch
This specifies the Welsch function which can perform well in cases where the residuals have an
exponential distribution. The weight function is given by
@tex
\beforedisplay
$$
w(e) = \exp{(-e^2)}
$$
\afterdisplay
@end tex
@ifinfo

@example
w(e) = \exp(-e^2)
@end example

@end ifinfo
and the default tuning constant is @math{t = 2.985}.
@end deffn
@end deftypefun

@deftypefun void gsl_multifit_robust_free (gsl_multifit_robust_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun {const char *} gsl_multifit_robust_name (const gsl_multifit_robust_workspace * @var{w})
This function returns the name of the robust type @var{T} specified to @code{gsl_multifit_robust_alloc}.
@end deftypefun

@deftypefun int gsl_multifit_robust_tune (const double @var{tune}, gsl_multifit_robust_workspace * @var{w})
This function sets the tuning constant @math{t} used to adjust the residuals at each iteration to @var{tune}.
Decreasing the tuning constant increases the downweight assigned to large residuals, while increasing
the tuning constant decreases the downweight assigned to large residuals.
@end deftypefun

@deftypefun int gsl_multifit_robust_maxiter (const size_t @var{maxiter}, gsl_multifit_robust_workspace * @var{w})
This function sets the maximum number of iterations in the iteratively
reweighted least squares algorithm to @var{maxiter}. By default,
this value is set to 100 by @code{gsl_multifit_robust_alloc}.
@end deftypefun

@deftypefun int gsl_multifit_robust_weights (const gsl_vector * @var{r}, gsl_vector * @var{wts}, gsl_multifit_robust_workspace * @var{w})
This function assigns weights to the vector @var{wts} using the residual vector @var{r} and
previously specified weighting function. The output weights are given by @math{wts_i = w(r_i / (t \sigma))},
where the weighting functions @math{w} are detailed in @code{gsl_multifit_robust_alloc}. @math{\sigma}
is an estimate of the residual standard deviation based on the Median-Absolute-Deviation and @math{t}
is the tuning constant. This
function is useful if the user wishes to implement their own robust regression rather than using
the supplied @code{gsl_multifit_robust} routine below.
@end deftypefun

@deftypefun int gsl_multifit_robust (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, gsl_multifit_robust_workspace * @var{w})
This function computes the best-fit parameters @var{c} of the model
@math{y = X c} for the observations @var{y} and the matrix of
predictor variables @var{X}, attemping to reduce the influence
of outliers using the algorithm outlined above.
The @math{p}-by-@math{p} variance-covariance matrix of the model parameters
@var{cov} is estimated as @math{\sigma^2 (X^T X)^{-1}}, where @math{\sigma} is
an approximation of the residual standard deviation using the theory of robust
regression. Special care must be taken when estimating @math{\sigma} and
other statistics such as @math{R^2}, and so these
are computed internally and are available by calling the function
@code{gsl_multifit_robust_statistics}.

If the coefficients do not converge within the maximum iteration
limit, the function returns @code{GSL_EMAXITER}. In this case,
the current estimates of the coefficients and covariance matrix
are returned in @var{c} and @var{cov} and the internal fit statistics
are computed with these estimates.
@end deftypefun

@deftypefun int gsl_multifit_robust_est (const gsl_vector * @var{x}, const gsl_vector * @var{c}, const gsl_matrix * @var{cov}, double * @var{y}, double * @var{y_err})
This function uses the best-fit robust regression coefficients
@var{c} and their covariance matrix
@var{cov} to compute the fitted function value
@var{y} and its standard deviation @var{y_err} for the model @math{y = x.c} 
at the point @var{x}.
@end deftypefun

@deftypefun int gsl_multifit_robust_residuals (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, const gsl_vector * @var{c}, gsl_vector * @var{r}, gsl_multifit_robust_workspace * @var{w})
This function computes the vector of studentized residuals
@math{r_i = {y_i - (X c)_i \over \sigma \sqrt{1 - h_i}}} for
the observations @var{y}, coefficients @var{c} and matrix of predictor
variables @var{X}. The routine @code{gsl_multifit_robust} must
first be called to compute the statisical leverages @math{h_i} of
the matrix @var{X} and residual standard deviation estimate @math{\sigma}.
@end deftypefun

@deftypefun gsl_multifit_robust_stats gsl_multifit_robust_statistics (const gsl_multifit_robust_workspace * @var{w})
This function returns a structure containing relevant statistics from a robust regression. The function
@code{gsl_multifit_robust} must be called first to perform the regression and calculate these statistics.
The returned @code{gsl_multifit_robust_stats} structure contains the following fields.
@itemize @w{}
@item double @code{sigma_ols} This contains the standard deviation of the residuals as computed from ordinary least squares (OLS).

@item double @code{sigma_mad} This contains an estimate of the standard deviation of the final residuals using the Median-Absolute-Deviation statistic

@item double @code{sigma_rob} This contains an estimate of the standard deviation of the final residuals from the theory of robust regression (see Street et al, 1988).

@item double @code{sigma} This contains an estimate of the standard deviation of the final residuals by attemping to reconcile @code{sigma_rob} and @code{sigma_ols}
in a reasonable way.

@item double @code{Rsq} This contains the @math{R^2} coefficient of determination statistic using the estimate @code{sigma}.

@item double @code{adj_Rsq} This contains the adjusted @math{R^2} coefficient of determination statistic using the estimate @code{sigma}.

@item double @code{rmse} This contains the root mean squared error of the final residuals

@item double @code{sse} This contains the residual sum of squares taking into account the robust covariance matrix.

@item size_t @code{dof} This contains the number of degrees of freedom @math{n - p}

@item size_t @code{numit} Upon successful convergence, this contains the number of iterations performed

@item gsl_vector * @code{weights} This contains the final weight vector of length @var{n}

@item gsl_vector * @code{r} This contains the final residual vector of length @var{n}, @math{r = y - X c}
@end itemize
@end deftypefun

@node Large Dense Linear Systems
@section Large dense linear systems
@cindex large dense linear least squares
@cindex linear least squares, large

This module is concerned with solving large dense least squares systems
@math{X c = y} where the @math{n}-by-@math{p} matrix
@math{X} has @math{n >> p} (ie: many more rows than columns).
This type of matrix is called a ``tall skinny'' matrix, and for
some applications, it may not be possible to fit the
entire matrix in memory at once to use the standard SVD approach.
Therefore, the algorithms in this module are designed to allow
the user to construct smaller blocks of the matrix @math{X} and
accumulate those blocks into the larger system one at a time. The
algorithms in this module never need to store the entire matrix
@math{X} in memory. The large linear least squares routines
support data weights and Tikhonov regularization, and are
designed to minimize the residual
@tex
\beforedisplay
$$
\chi^2 = || y - Xc ||_W^2 + \lambda^2 || L c ||^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = || y - Xc ||_W^2 + \lambda^2 || L c ||^2
@end example
@end ifinfo
where @math{y} is the @math{n}-by-@math{1} observation vector,
@math{X} is the @math{n}-by-@math{p} design matrix, @math{c} is
the @math{p}-by-@math{1} solution vector,
@math{W =} diag@math{(w_1,...,w_n)} is the data weighting matrix,
@math{L} is an @math{m}-by-@math{p} regularization matrix,
@math{\lambda} is a regularization parameter,
and @math{||r||_W^2 = r^T W r}. In the discussion which follows,
we will assume that the system has been converted into Tikhonov
standard form,
@tex
\beforedisplay
$$
\chi^2 = || \tilde{y} - \tilde{X} \tilde{c} ||^2 + \lambda^2 || \tilde{c} ||^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = || y~ - X~ c~ ||^2 + \lambda^2 || c~ ||^2
@end example
@end ifinfo
and we will drop the tilde characters from the various parameters.
For a discussion of the transformation to standard form
@pxref{Regularized regression}.

The basic idea is to partition the matrix @math{X} and observation
vector @math{y} as
@tex
\beforedisplay
$$
\left(
\matrix{
X_1 \cr
X_2 \cr
X_3 \cr
\vdots \cr
X_k \cr
}
\right)
c =
\left(
\matrix{
y_1 \cr
y_2 \cr
y_3 \cr
\vdots \cr
y_k \cr
}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
[ X_1 ] c = [ y_1 ]
[ X_2 ]     [ y_2 ]
[ X_3 ]     [ y_3 ]
[ ... ]     [ ... ]
[ X_k ]     [ y_k ]
@end example
@end ifinfo
into @math{k} blocks, where each block (@math{X_i,y_i}) may have
any number of rows, but each @math{X_i} has @math{p} columns.
The sections below describe the methods available for solving
this partitioned system. The functions are declared in
the header file @file{gsl_multilarge.h}.

@menu
* Large Dense Linear Systems Normal Equations::
* Large Dense Linear Systems TSQR::
* Large Dense Linear Systems Solution Steps::
* Large Dense Linear Systems Routines::
@end menu

@node Large Dense Linear Systems Normal Equations
@subsection Normal Equations Approach
@cindex large linear least squares, normal equations

The normal equations approach to the large linear least squares
problem described above is popular due to its speed and simplicity.
Since the normal equations solution to the problem is given by
@tex
\beforedisplay
$$
c = \left( X^T X + \lambda^2 I \right)^{-1} X^T y
$$
\afterdisplay
@end tex
@ifinfo
@example
c = ( X^T X + \lambda^2 I )^-1 X^T y
@end example
@end ifinfo
only the @math{p}-by-@math{p} matrix @math{X^T X} and
@math{p}-by-1 vector @math{X^T y} need to be stored. Using
the partition scheme described above, these are given by
@tex
\beforedisplay
$$
\eqalign{
X^T X &= \sum_i X_i^T X_i \cr
X^T y &= \sum_i X_i^T y_i
}
$$
\afterdisplay
@end tex
@ifinfo
@example
X^T X = \sum_i X_i^T X_i
X^T y = \sum_i X_i^T y_i
@end example
@end ifinfo
Since the matrix @math{X^T X} is symmetric, only half of it
needs to be calculated. Once all of the blocks (@math{X_i,y_i})
have been accumulated into the final @math{X^T X} and @math{X^T y},
the system can be solved with a Cholesky factorization of the
@math{X^T X} matrix. If the Cholesky factorization fails (occasionally
due to numerical rounding errors), a QR decomposition is then used.
In both cases, the @math{X^T X} matrix is first transformed via
a diagonal scaling transformation to attempt to reduce its condition
number as much as possible to recover a more accurate solution vector.
The normal equations approach is the fastest method for solving the
large least squares problem, and is accurate for well-conditioned
matrices @math{X}. However, for ill-conditioned matrices, as is often
the case for large systems, this method can suffer from numerical
instabilities (see Trefethen and Bau, 1997).  The number of operations
for this method is @math{O(np^2 + {1 \over 3}p^3)}.

@node Large Dense Linear Systems TSQR
@subsection Tall Skinny QR (TSQR) Approach
@cindex large linear least squares, TSQR

An algorithm which has better numerical stability for ill-conditioned
problems is known as the Tall Skinny QR (TSQR) method. This method
is based on computing the thin QR decomposition of the least squares
matrix @math{X = Q R}, where @math{Q} is an @math{n}-by-@math{p} matrix
with orthogonal columns, and @math{R} is a @math{p}-by-@math{p}
upper triangular matrix. Once these factors are calculated, the
residual becomes
@tex
\beforedisplay
$$
\chi^2 = || Q^T y - R c ||^2 + \lambda^2 || c ||^2
$$
\afterdisplay
@end tex
@ifinfo
@example
\chi^2 = || Q^T y - R c ||^2 + \lambda^2 || c ||^2
@end example
@end ifinfo
which can be written as the matrix equation
@tex
\beforedisplay
$$
\left(
\matrix{
R \cr
\lambda I
} \right) c =
\left(
\matrix{
Q^T y \cr
0
} \right)
$$
\afterdisplay
@end tex
@ifinfo
@example
[ R ; \lambda I ] c = [ Q^T b ; 0 ]
@end example
@end ifinfo
The matrix on the left hand side is now a much
smaller @math{2p}-by-@math{p} matrix which can
be solved with a standard SVD approach. The
@math{Q} matrix is just as large as the original
matrix @math{X}, however it does not need to be
explicitly constructed. The TSQR algorithm
computes only the @math{p}-by-@math{p} matrix
@math{R} and the @math{p}-by-1 vector @math{Q^T y},
and updates these quantities as new blocks
are added to the system. Each time a new block of rows
(@math{X_i,y_i}) is added, the algorithm performs a QR decomposition
of the matrix
@tex
\beforedisplay
$$
\left(
\matrix{
R_{i-1} \cr
X_i
} \right)
$$
\afterdisplay
@end tex
@ifinfo
@example
[ R_(i-1) ; X_i ]
@end example
@end ifinfo
where @math{R_{i-1}} is the upper triangular
@math{R} factor for the matrix
@tex
\beforedisplay
$$
\left(
\matrix{
X_1 \cr
\vdots \cr
X_{i-1}
} \right)
$$
\afterdisplay
@end tex
@ifinfo
@example
[ X_1 ; ... ; X_(i-1) ]
@end example
@end ifinfo
This QR decomposition is done efficiently taking into account
the sparse structure of @math{R_{i-1}}. See Demmel et al, 2008 for
more details on how this is accomplished. The number
of operations for this method is @math{O(2np^2 - {2 \over 3}p^3)}.

@node Large Dense Linear Systems Solution Steps
@subsection Large Dense Linear Systems Solution Steps
@cindex large linear least squares, steps
The typical steps required to solve large regularized linear least
squares problems are as follows:

@enumerate

@item Choose the regularization matrix @math{L}.

@item Construct a block of rows of the least squares matrix, right
hand side vector, and weight vector (@math{X_i}, @math{y_i}, @math{w_i}).

@item Transform the block to standard form (@math{\tilde{X_i}},@math{\tilde{y_i}}). This
step can be skipped if @math{L = I} and @math{W = I}.

@item Accumulate the standard form block (@math{\tilde{X_i}},@math{\tilde{y_i}}) into
the system.

@item Repeat steps 2-4 until the entire matrix and right hand side vector have
been accumulated.

@item Determine an appropriate regularization parameter @math{\lambda} (using for example
L-curve analysis).

@item Solve the standard form system using the chosen @math{\lambda}.

@item Backtransform the standard form solution @math{\tilde{c}} to recover the
original solution vector @math{c}.

@end enumerate

@node Large Dense Linear Systems Routines
@subsection Large Dense Linear Least Squares Routines
@cindex large linear least squares, routines

@deftypefun {gsl_multilarge_linear_workspace *} gsl_multilarge_linear_alloc (const gsl_multilarge_linear_type * @var{T}, const size_t @var{p})
This function allocates a workspace for solving large linear least squares
systems. The least squares matrix @math{X} has @var{p} columns,
but may have any number of rows. The parameter @var{T} specifies
the method to be used for solving the large least squares system
and may be selected from the following choices

@deffn {Multilarge type} gsl_multilarge_linear_normal
This specifies the normal equations approach for
solving the least squares system. This method is suitable
in cases where performance is critical and it is known that the
least squares matrix @math{X} is well conditioned. The size
of this workspace is @math{O(p^2)}.
@end deffn

@deffn {Multilarge type} gsl_multilarge_linear_tsqr
This specifies the sequential Tall Skinny QR (TSQR) approach for
solving the least squares system. This method is a good
general purpose choice for large systems, but requires about
twice as many operations as the normal equations method for
@math{n >> p}. The size of this workspace is @math{O(p^2)}.
@end deffn
@end deftypefun

@deftypefun void gsl_multilarge_linear_free (gsl_multilarge_linear_workspace * @var{w})
This function frees the memory associated with the
workspace @var{w}.
@end deftypefun

@deftypefun {const char *} gsl_multilarge_linear_name (gsl_multilarge_linear_workspace * @var{w})
This function returns a string pointer to the name
of the multilarge solver.
@end deftypefun

@deftypefun int gsl_multilarge_linear_reset (gsl_multilarge_linear_workspace * @var{w})
This function resets the workspace @var{w} so
it can begin to accumulate a new least squares
system.
@end deftypefun

@deftypefun int gsl_multilarge_linear_stdform1 (const gsl_vector * @var{L}, const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_multilarge_linear_workspace * @var{work})
@deftypefunx int gsl_multilarge_linear_wstdform1 (const gsl_vector * @var{L}, const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_multilarge_linear_workspace * @var{work})
These functions define a regularization matrix
@math{L =} diag@math{(l_0,l_1,...,l_{p-1})}.
The diagonal matrix element @math{l_i} is provided by the
@math{i}th element of the input vector @var{L}.
The block (@var{X},@var{y}) is converted to standard form and
the parameters (@math{\tilde{X}},@math{\tilde{y}}) are stored in @var{Xs}
and @var{ys} on output.  @var{Xs} and @var{ys} have the same dimensions as
@var{X} and @var{y}. Optional data weights may be supplied in the
vector @var{w}. In order to apply this transformation,
@math{L^{-1}} must exist and so none of the @math{l_i}
may be zero. After the standard form system has been solved,
use @code{gsl_multilarge_linear_genform1} to recover the original solution vector.
It is allowed to have @var{X} = @var{Xs} and @var{y} = @var{ys} for an in-place transform.
@end deftypefun

@deftypefun int gsl_multilarge_linear_L_decomp (gsl_matrix * @var{L}, gsl_vector * @var{tau})
This function calculates the QR decomposition of the @math{m}-by-@math{p} regularization matrix
@var{L}. @var{L} must have @math{m \ge p}.  On output,
the Householder scalars are stored in the vector @var{tau} of size @math{p}.
These outputs will be used by @code{gsl_multilarge_linear_wstdform2} to complete the
transformation to standard form.
@end deftypefun

@deftypefun int gsl_multilarge_linear_stdform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_multilarge_linear_workspace * @var{work})
@deftypefunx int gsl_multilarge_linear_wstdform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_matrix * @var{Xs}, gsl_vector * @var{ys}, gsl_multilarge_linear_workspace * @var{work})
These functions convert a block of rows (@var{X},@var{y},@var{w}) to standard
form (@math{\tilde{X}},@math{\tilde{y}}) which are stored in @var{Xs} and @var{ys}
respectively. @var{X}, @var{y}, and @var{w} must all have the same number of rows.
The @math{m}-by-@math{p} regularization matrix @var{L} is specified by the inputs
@var{LQR} and @var{Ltau}, which are outputs from @code{gsl_multilarge_linear_L_decomp}.
@var{Xs} and @var{ys} have the same dimensions as @var{X} and @var{y}. After the
standard form system has been solved, use @code{gsl_multilarge_linear_genform2} to
recover the original solution vector. Optional data weights may be supplied in the
vector @var{w}, where @math{W =} diag(w).
@end deftypefun

@deftypefun int gsl_multilarge_linear_accumulate (gsl_matrix * @var{X}, gsl_vector * @var{y}, gsl_multilarge_linear_workspace * @var{w})
This function accumulates the standard form block (@math{X,y}) into the
current least squares system. @var{X} and @var{y} have the same number
of rows, which can be arbitrary.  @var{X} must have @math{p} columns.
For the TSQR method, @var{X} and @var{y} are destroyed on output.
For the normal equations method, they are both unchanged.
@end deftypefun

@deftypefun int gsl_multilarge_linear_solve (const double @var{lambda}, gsl_vector * @var{c}, double * @var{rnorm}, double * @var{snorm}, gsl_multilarge_linear_workspace * @var{w})
After all blocks (@math{X_i,y_i}) have been accumulated into
the large least squares system, this function will compute
the solution vector which is stored in @var{c} on output.
The regularization parameter @math{\lambda} is provided in
@var{lambda}. On output, @var{rnorm} contains the residual norm
@math{||y - X c||_W} and @var{snorm} contains the solution
norm @math{||L c||}.
@end deftypefun

@deftypefun int gsl_multilarge_linear_genform1 (const gsl_vector * @var{L}, const gsl_vector * @var{cs}, gsl_vector * @var{c}, gsl_multilarge_linear_workspace * @var{work})
After a regularized system has been solved with
@math{L =} diag@math{(\l_0,\l_1,...,\l_{p-1})},
this function backtransforms the standard form solution vector @var{cs}
to recover the solution vector of the original problem @var{c}. The
diagonal matrix elements @math{l_i} are provided in
the vector @var{L}. It is allowed to have @var{c} = @var{cs} for an
in-place transform.
@end deftypefun

@deftypefun int gsl_multilarge_linear_genform2 (const gsl_matrix * @var{LQR}, const gsl_vector * @var{Ltau}, const gsl_vector * @var{cs}, gsl_vector * @var{c}, gsl_multilarge_linear_workspace * @var{work})
After a regularized system has been solved with a regularization matrix @math{L},
specified by (@var{LQR},@var{Ltau}), this function backtransforms the standard form solution @var{cs}
to recover the solution vector of the original problem, which is stored in @var{c},
of length @math{p}.
@end deftypefun

@deftypefun int gsl_multilarge_linear_lcurve (gsl_vector * @var{reg_param}, gsl_vector * @var{rho}, gsl_vector * @var{eta}, gsl_multilarge_linear_workspace * @var{work})
This function computes the L-curve for a large least squares system
after it has been fully accumulated into the workspace @var{work}.
The output vectors @var{reg_param}, @var{rho}, and @var{eta} must all
be the same size, and will contain the regularization parameters
@math{\lambda_i}, residual norms @math{||y - X c_i||}, and solution
norms @math{|| L c_i ||} which compose the L-curve, where @math{c_i}
is the regularized solution vector corresponding to @math{\lambda_i}.
The user may determine the number of points on the L-curve by
adjusting the size of these input arrays. For the TSQR method,
the regularization parameters @math{\lambda_i} are estimated from the
singular values of the triangular @math{R} factor. For the normal
equations method, they are estimated from the eigenvalues of the
@math{X^T X} matrix.
@end deftypefun

@deftypefun int gsl_multilarge_linear_rcond (double * @var{rcond}, gsl_multilarge_linear_workspace * @var{work})
This function computes the reciprocal condition number, stored in
@var{rcond}, of the least squares matrix after it has been accumulated
into the workspace @var{work}. For the TSQR algorithm, this is
accomplished by calculating the SVD of the @math{R} factor, which
has the same singular values as the matrix @math{X}. For the normal
equations method, this is done by computing the eigenvalues of
@math{X^T X}, which could be inaccurate for ill-conditioned matrices
@math{X}.
@end deftypefun

@node Troubleshooting
@section Troubleshooting
@cindex least squares troubleshooting

When using models based on polynomials, care should be taken when constructing the design matrix
@math{X}. If the @math{x} values are large, then the matrix @math{X} could be ill-conditioned
since its columns are powers of @math{x}, leading to unstable least-squares solutions.
In this case it can often help to center and scale the @math{x} values using the mean and standard deviation:
@tex
\beforedisplay
$$
x' = {x - \mu(x) \over \sigma(x)}
$$
\afterdisplay
@end tex
@ifinfo

@example
x' = (x - mu)/sigma
@end example

@end ifinfo
@noindent
and then construct the @math{X} matrix using the transformed values @math{x'}.

@node Fitting Examples
@section Examples

The example programs in this section demonstrate the various linear regression methods.

@menu
* Fitting linear regression example::
* Fitting multi-parameter linear regression example::
* Fitting regularized linear regression example 1::
* Fitting regularized linear regression example 2::
* Fitting robust linear regression example::
* Fitting large linear systems example::
@end menu

@node Fitting linear regression example
@subsection Simple Linear Regression Example

The following program computes a least squares straight-line fit to a
simple dataset, and outputs the best-fit line and its
associated one standard-deviation error bars.

@example
@verbatiminclude examples/fitting.c
@end example

@noindent
The following commands extract the data from the output of the program
and display it using the @sc{gnu} plotutils @code{graph} utility, 

@example
$ ./demo > tmp
$ more tmp
# best fit: Y = -106.6 + 0.06 X
# covariance matrix:
# [ 39602, -19.9
#   -19.9, 0.01]
# chisq = 0.8

$ for n in data fit hi lo ; 
   do 
     grep "^$n" tmp | cut -d: -f2 > $n ; 
   done
$ graph -T X -X x -Y y -y 0 20 -m 0 -S 2 -Ie data 
     -S 0 -I a -m 1 fit -m 2 hi -m 2 lo
@end example

@iftex
@sp 1
@center @image{fit-wlinear,3.0in}
@end iftex

@node Fitting multi-parameter linear regression example
@subsection Multi-parameter Linear Regression Example

The following program performs a quadratic fit @math{y = c_0 + c_1 x + c_2
x^2} to a weighted dataset using the generalised linear fitting function
@code{gsl_multifit_wlinear}.  The model matrix @math{X} for a quadratic
fit is given by,
@tex
\beforedisplay
$$
X=\pmatrix{1&x_0&x_0^2\cr
1&x_1&x_1^2\cr
1&x_2&x_2^2\cr
\dots&\dots&\dots\cr}
$$
\afterdisplay
@end tex
@ifinfo

@example
X = [ 1   , x_0  , x_0^2 ;
      1   , x_1  , x_1^2 ;
      1   , x_2  , x_2^2 ;
      ... , ...  , ...   ]
@end example

@end ifinfo
@noindent
where the column of ones corresponds to the constant term @math{c_0}.
The two remaining columns corresponds to the terms @math{c_1 x} and
@math{c_2 x^2}.

The program reads @var{n} lines of data in the format (@var{x}, @var{y},
@var{err}) where @var{err} is the error (standard deviation) in the
value @var{y}.

@example
@verbatiminclude examples/fitting2.c
@end example

@noindent
A suitable set of data for fitting can be generated using the following
program.  It outputs a set of points with gaussian errors from the curve
@math{y = e^x} in the region @math{0 < x < 2}.

@example
@verbatiminclude examples/fitting3.c
@end example

@noindent
The data can be prepared by running the resulting executable program,

@example
$ GSL_RNG_TYPE=mt19937_1999 ./generate > exp.dat
$ more exp.dat
0.1 0.97935 0.110517
0.2 1.3359 0.12214
0.3 1.52573 0.134986
0.4 1.60318 0.149182
0.5 1.81731 0.164872
0.6 1.92475 0.182212
....
@end example

@noindent
To fit the data use the previous program, with the number of data points
given as the first argument.  In this case there are 19 data points.

@example
$ ./fit 19 < exp.dat
0.1 0.97935 +/- 0.110517
0.2 1.3359 +/- 0.12214
...
# best fit: Y = 1.02318 + 0.956201 X + 0.876796 X^2
# covariance matrix:
[ +1.25612e-02, -3.64387e-02, +1.94389e-02  
  -3.64387e-02, +1.42339e-01, -8.48761e-02  
  +1.94389e-02, -8.48761e-02, +5.60243e-02 ]
# chisq = 23.0987
@end example

@noindent
The parameters of the quadratic fit match the coefficients of the
expansion of @math{e^x}, taking into account the errors on the
parameters and the @math{O(x^3)} difference between the exponential and
quadratic functions for the larger values of @math{x}.  The errors on
the parameters are given by the square-root of the corresponding
diagonal elements of the covariance matrix.  The chi-squared per degree
of freedom is 1.4, indicating a reasonable fit to the data.

@iftex
@sp 1
@center @image{fit-wlinear2,3.0in}
@end iftex

@node Fitting regularized linear regression example 1
@subsection Regularized Linear Regression Example 1

The next program demonstrates the difference between ordinary and
regularized least squares when the design matrix is near-singular.
In this program, we generate two random normally distributed variables
@math{u} and @math{v}, with @math{v = u + noise} so that @math{u}
and @math{v} are nearly colinear. We then set a third dependent
variable @math{y = u + v + noise} and solve for the coefficients
@math{c_1,c_2} of the model @math{Y(c_1,c_2) = c_1 u + c_2 v}.
Since @math{u \approx v}, the design matrix @math{X} is nearly
singular, leading to unstable ordinary least squares solutions.

@noindent
Here is the program output:
@example
matrix condition number = 1.025113e+04
=== Unregularized fit ===
best fit: y = -43.6588 u + 45.6636 v
residual norm = 31.6248
solution norm = 63.1764
chisq/dof = 1.00213
=== Regularized fit (L-curve) ===
optimal lambda: 4.51103
best fit: y = 1.00113 u + 1.0032 v
residual norm = 31.6547
solution norm = 1.41728
chisq/dof = 1.04499
=== Regularized fit (GCV) ===
optimal lambda: 0.0232029
best fit: y = -19.8367 u + 21.8417 v
residual norm = 31.6332
solution norm = 29.5051
chisq/dof = 1.00314
@end example

@noindent
We see that the ordinary least squares solution is completely wrong,
while the L-curve regularized method with the optimal
@math{\lambda = 4.51103} finds the correct solution
@math{c_1 \approx c_2 \approx 1}. The GCV regularized method finds
a regularization parameter @math{\lambda = 0.0232029} which is too
small to give an accurate solution, although it performs better than OLS.
The L-curve and its computed corner, as well as the GCV curve and its
minimum are plotted below.

@iftex
@sp 1
@center @image{regularized,5.0in}
@end iftex

@noindent The program is given below.
@example
@verbatiminclude examples/fitreg.c
@end example

@node Fitting regularized linear regression example 2
@subsection Regularized Linear Regression Example 2

The following example program minimizes the cost function
@tex
\beforedisplay
$$
||y - X c||^2 + \lambda^2 ||x||^2
$$
\afterdisplay
@end tex
@ifinfo

@example
||y - X c||^2 + \lambda^2 ||x||^2
@end example

@end ifinfo
@noindent
where @math{X} is the @math{10}-by-@math{8} Hilbert matrix whose
entries are given by
@tex
\beforedisplay
$$
X_{ij} = {1 \over i + j - 1}
$$
\afterdisplay
@end tex
@ifinfo

@example
X_@{ij@} = 1 / (i + j - 1)
@end example

@end ifinfo
@noindent
and the right hand side vector is given by
@math{y = [1,-1,1,-1,1,-1,1,-1,1,-1]^T}. Solutions
are computed for @math{\lambda = 0} (unregularized) as
well as for optimal parameters @math{\lambda} chosen by
analyzing the L-curve and GCV curve.

@noindent
Here is the program output:
@example
matrix condition number = 3.565872e+09
=== Unregularized fit ===
residual norm = 2.15376
solution norm = 2.92217e+09
chisq/dof = 2.31934
=== Regularized fit (L-curve) ===
optimal lambda: 7.11407e-07
residual norm = 2.60386
solution norm = 424507
chisq/dof = 3.43565
=== Regularized fit (GCV) ===
optimal lambda: 1.72278
residual norm = 3.1375
solution norm = 0.139357
chisq/dof = 4.95076
@end example

@noindent
Here we see the unregularized solution results in a large solution
norm due to the ill-conditioned matrix. The L-curve solution finds
a small value of @math{\lambda = 7.11e-7} which still results in
a badly conditioned system and a large solution norm. The GCV method
finds a parameter @math{\lambda = 1.72} which results in a well-conditioned
system and small solution norm.

@noindent
The L-curve and its computed corner, as well as the GCV curve and its
minimum are plotted below.

@iftex
@sp 1
@center @image{regularized2,5.0in}
@end iftex

@noindent The program is given below.
@example
@verbatiminclude examples/fitreg2.c
@end example

@node Fitting robust linear regression example
@subsection Robust Linear Regression Example

The next program demonstrates the advantage of robust least squares on
a dataset with outliers. The program generates linear @math{(x,y)}
data pairs on the line @math{y = 1.45 x + 3.88}, adds some random
noise, and inserts 3 outliers into the dataset. Both the robust
and ordinary least squares (OLS) coefficients are computed for
comparison.

@example
@verbatiminclude examples/robfit.c
@end example

The output from the program is shown in the following plot.

@iftex
@sp 1
@center @image{robust,3.0in}
@end iftex

@node Fitting large linear systems example
@subsection Large Dense Linear Regression Example

The following program demostrates the large dense linear least squares
solvers. This example is adapted from Trefethen and Bau,
and fits the function @math{f(t) = \exp{(\sin^3{(10t)}})} on
the interval @math{[0,1]} with a degree 15 polynomial. The
program generates @math{n = 50000} equally spaced points
@math{t_i} on this interval, calculates the function value
and adds random noise to determine the observation value
@math{y_i}. The entries of the least squares matrix are
@math{X_{ij} = t_i^j}, representing a polynomial fit. The
matrix is highly ill-conditioned, with a condition number
of about @math{1.4 \cdot 10^{11}}. The program accumulates the
matrix into the least squares system in 5 blocks, each with
10000 rows. This way the full matrix @math{X} is never
stored in memory. We solve the system with both the
normal equations and TSQR methods. The results are shown
in the plot below. In the top left plot, we see the unregularized
normal equations solution has larger error than TSQR due to
the ill-conditioning of the matrix. In the bottom left plot,
we show the L-curve, which exhibits multiple corners.
In the top right panel, we plot a regularized solution using
@math{\lambda = 10^{-6}}. The TSQR and normal solutions now agree,
however they are unable to provide a good fit due to the damping.
This indicates that for some ill-conditioned
problems, regularizing the normal equations does not improve the
solution. This is further illustrated in the bottom right panel,
where we plot the L-curve calculated from the normal equations.
The curve agrees with the TSQR curve for larger damping parameters,
but for small @math{\lambda}, the normal equations approach cannot
provide accurate solution vectors leading to numerical
inaccuracies in the left portion of the curve.

@iftex
@sp 1
@center @image{multilarge,6.0in}
@end iftex

@example
@verbatiminclude examples/largefit.c
@end example

@node Fitting References and Further Reading
@section References and Further Reading

A summary of formulas and techniques for least squares fitting can be
found in the ``Statistics'' chapter of the Annual Review of Particle
Physics prepared by the Particle Data Group,

@itemize @w{}
@item
@cite{Review of Particle Properties},
R.M. Barnett et al., Physical Review D54, 1 (1996)
@uref{http://pdg.lbl.gov/}
@end itemize

@noindent
The Review of Particle Physics is available online at the website given
above.

@cindex NIST Statistical Reference Datasets
@cindex Statistical Reference Datasets (StRD)
The tests used to prepare these routines are based on the NIST
Statistical Reference Datasets. The datasets and their documentation are
available from NIST at the following website,

@center @uref{http://www.nist.gov/itl/div898/strd/index.html}.

@noindent
More information on Tikhonov regularization can be found in

@itemize @w{}
@item Hansen, P. C. (1998), Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion. SIAM Monogr. on Mathematical
Modeling and Computation, Society for Industrial and Applied Mathematics

@item M. Rezghi and S. M. Hosseini (2009), A new variant of L-curve for
Tikhonov regularization, Journal of Computational and Applied Mathematics,
Volume 231, Issue 2, pages 914-924.
@end itemize

@noindent
The GSL implementation of robust linear regression closely follows the publications

@itemize @w{}
@item DuMouchel, W. and F. O'Brien (1989), "Integrating a robust
option into a multiple regression computing environment,"
Computer Science and Statistics:  Proceedings of the 21st
Symposium on the Interface, American Statistical Association

@item Street, J.O., R.J. Carroll, and D. Ruppert (1988), "A note on
computing robust regression estimates via iteratively
reweighted least squares," The American Statistician, v. 42, 
pp. 152-154.
@end itemize

@noindent
More information about the normal equations and TSQR approach for solving
large linear least squares systems can be found in the publications

@itemize @w{}
@item Trefethen, L. N. and Bau, D. (1997), "Numerical Linear Algebra", SIAM.

@item Demmel, J., Grigori, L., Hoemmen, M. F., and Langou, J.
"Communication-optimal parallel and sequential QR and LU factorizations",
UCB Technical Report No. UCB/EECS-2008-89, 2008.
@end itemize