1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
|
@cindex linear algebra
@cindex solution of linear systems, Ax=b
@cindex matrix factorization
@cindex factorization of matrices
This chapter describes functions for solving linear systems. The
library provides linear algebra operations which operate directly on
the @code{gsl_vector} and @code{gsl_matrix} objects. These routines
use the standard algorithms from Golub & Van Loan's @cite{Matrix
Computations} with Level-1 and Level-2 BLAS calls for efficiency.
The functions described in this chapter are declared in the header file
@file{gsl_linalg.h}.
@menu
* LU Decomposition::
* QR Decomposition::
* QR Decomposition with Column Pivoting::
* Complete Orthogonal Decomposition::
* Singular Value Decomposition::
* Cholesky Decomposition::
* Pivoted Cholesky Decomposition::
* Modified Cholesky Decomposition::
* Tridiagonal Decomposition of Real Symmetric Matrices::
* Tridiagonal Decomposition of Hermitian Matrices::
* Hessenberg Decomposition of Real Matrices::
* Hessenberg-Triangular Decomposition of Real Matrices::
* Bidiagonalization::
* Givens Rotations::
* Householder Transformations::
* Householder solver for linear systems::
* Tridiagonal Systems::
* Triangular Systems::
* Balancing::
* Linear Algebra Examples::
* Linear Algebra References and Further Reading::
@end menu
@node LU Decomposition
@section LU Decomposition
@cindex LU decomposition
A general @math{N}-by-@math{N} square matrix @math{A} has an @math{LU} decomposition into
upper and lower triangular matrices,
@tex
\beforedisplay
$$
P A = L U
$$
\afterdisplay
@end tex
@ifinfo
@example
P A = L U
@end example
@end ifinfo
@noindent
where @math{P} is a permutation matrix, @math{L} is unit lower
triangular matrix and @math{U} is upper triangular matrix. For square
matrices this decomposition can be used to convert the linear system
@math{A x = b} into a pair of triangular systems (@math{L y = P b},
@math{U x = y}), which can be solved by forward and back-substitution.
Note that the @math{LU} decomposition is valid for singular matrices.
@deftypefun int gsl_linalg_LU_decomp (gsl_matrix * @var{A}, gsl_permutation * @var{p}, int * @var{signum})
@deftypefunx int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * @var{A}, gsl_permutation * @var{p}, int * @var{signum})
These functions factorize the square matrix @var{A} into the @math{LU}
decomposition @math{PA = LU}. On output the diagonal and upper
triangular part of the input matrix @var{A} contain the matrix
@math{U}. The lower triangular part of the input matrix (excluding the
diagonal) contains @math{L}. The diagonal elements of @math{L} are
unity, and are not stored.
The permutation matrix @math{P} is encoded in the permutation
@var{p} on output. The @math{j}-th column of the matrix @math{P}
is given by the @math{k}-th column of the identity matrix, where
@math{k = p_j} the
@math{j}-th element of the permutation vector. The sign of the
permutation is given by @var{signum}. It has the value @math{(-1)^n},
where @math{n} is the number of interchanges in the permutation.
The algorithm used in the decomposition is Gaussian Elimination with
partial pivoting (Golub & Van Loan, @cite{Matrix Computations},
Algorithm 3.4.1).
@end deftypefun
@cindex linear systems, solution of
@deftypefun int gsl_linalg_LU_solve (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
@deftypefunx int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x})
These functions solve the square system @math{A x = b} using the @math{LU}
decomposition of @math{A} into (@var{LU}, @var{p}) given by
@code{gsl_linalg_LU_decomp} or @code{gsl_linalg_complex_LU_decomp} as input.
@end deftypefun
@deftypefun int gsl_linalg_LU_svx (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
@deftypefunx int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_vector_complex * @var{x})
These functions solve the square system @math{A x = b} in-place using the
precomputed @math{LU} decomposition of @math{A} into (@var{LU},@var{p}). On input
@var{x} should contain the right-hand side @math{b}, which is replaced
by the solution on output.
@end deftypefun
@cindex refinement of solutions in linear systems
@cindex iterative refinement of solutions in linear systems
@cindex linear systems, refinement of solutions
@deftypefun int gsl_linalg_LU_refine (const gsl_matrix * @var{A}, const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{work})
@deftypefunx int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x}, gsl_vector_complex * @var{work})
These functions apply an iterative improvement to @var{x}, the solution
of @math{A x = b}, from the precomputed @math{LU} decomposition of @math{A} into
(@var{LU},@var{p}). Additional workspace of length @var{N} is required in @var{work}.
@end deftypefun
@cindex inverse of a matrix, by LU decomposition
@cindex matrix inverse
@deftypefun int gsl_linalg_LU_invert (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix * @var{inverse})
@deftypefunx int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix_complex * @var{inverse})
These functions compute the inverse of a matrix @math{A} from its
@math{LU} decomposition (@var{LU},@var{p}), storing the result in the
matrix @var{inverse}. The inverse is computed by solving the system
@math{A x = b} for each column of the identity matrix. It is preferable
to avoid direct use of the inverse whenever possible, as the linear
solver functions can obtain the same result more efficiently and
reliably (consult any introductory textbook on numerical linear algebra
for details).
@end deftypefun
@cindex determinant of a matrix, by LU decomposition
@cindex matrix determinant
@deftypefun double gsl_linalg_LU_det (gsl_matrix * @var{LU}, int @var{signum})
@deftypefunx gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * @var{LU}, int @var{signum})
These functions compute the determinant of a matrix @math{A} from its
@math{LU} decomposition, @var{LU}. The determinant is computed as the
product of the diagonal elements of @math{U} and the sign of the row
permutation @var{signum}.
@end deftypefun
@cindex logarithm of the determinant of a matrix
@deftypefun double gsl_linalg_LU_lndet (gsl_matrix * @var{LU})
@deftypefunx double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * @var{LU})
These functions compute the logarithm of the absolute value of the
determinant of a matrix @math{A}, @math{\ln|\det(A)|}, from its @math{LU}
decomposition, @var{LU}. This function may be useful if the direct
computation of the determinant would overflow or underflow.
@end deftypefun
@cindex sign of the determinant of a matrix
@deftypefun int gsl_linalg_LU_sgndet (gsl_matrix * @var{LU}, int @var{signum})
@deftypefunx gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * @var{LU}, int @var{signum})
These functions compute the sign or phase factor of the determinant of a
matrix @math{A}, @math{\det(A)/|\det(A)|}, from its @math{LU} decomposition,
@var{LU}.
@end deftypefun
@node QR Decomposition
@section QR Decomposition
@cindex QR decomposition
A general rectangular @math{M}-by-@math{N} matrix @math{A} has a
@math{QR} decomposition into the product of an orthogonal
@math{M}-by-@math{M} square matrix @math{Q} (where @math{Q^T Q = I}) and
an @math{M}-by-@math{N} right-triangular matrix @math{R},
@tex
\beforedisplay
$$
A = Q R
$$
\afterdisplay
@end tex
@ifinfo
@example
A = Q R
@end example
@end ifinfo
@noindent
This decomposition can be used to convert the linear system @math{A x =
b} into the triangular system @math{R x = Q^T b}, which can be solved by
back-substitution. Another use of the @math{QR} decomposition is to
compute an orthonormal basis for a set of vectors. The first @math{N}
columns of @math{Q} form an orthonormal basis for the range of @math{A},
@math{ran(A)}, when @math{A} has full column rank.
@deftypefun int gsl_linalg_QR_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
the @math{QR} decomposition @math{A = Q R}. On output the diagonal and
upper triangular part of the input matrix contain the matrix
@math{R}. The vector @var{tau} and the columns of the lower triangular
part of the matrix @var{A} contain the Householder coefficients and
Householder vectors which encode the orthogonal matrix @var{Q}. The
vector @var{tau} must be of length @math{k=\min(M,N)}. The matrix
@math{Q} is related to these components by, @math{Q = Q_k ... Q_2 Q_1}
where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the
Householder vector @math{v_i =
(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme
as used by @sc{lapack}.
The algorithm used to perform the decomposition is Householder QR (Golub
& Van Loan, @cite{Matrix Computations}, Algorithm 5.2.1).
@end deftypefun
@deftypefun int gsl_linalg_QR_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the square system @math{A x = b} using the @math{QR}
decomposition of @math{A} held in (@var{QR}, @var{tau}) which must
have been computed previously with @code{gsl_linalg_QR_decomp}.
The least-squares solution for
rectangular systems can be found using @code{gsl_linalg_QR_lssolve}.
@end deftypefun
@deftypefun int gsl_linalg_QR_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{x})
This function solves the square system @math{A x = b} in-place using
the @math{QR} decomposition of @math{A} held in (@var{QR},@var{tau})
which must have been computed previously by
@code{gsl_linalg_QR_decomp}. On input @var{x} should contain the
right-hand side @math{b}, which is replaced by the solution on output.
@end deftypefun
@deftypefun int gsl_linalg_QR_lssolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
This function finds the least squares solution to the overdetermined
system @math{A x = b} where the matrix @var{A} has more rows than
columns. The least squares solution minimizes the Euclidean norm of the
residual, @math{||Ax - b||}.The routine requires as input
the @math{QR} decomposition
of @math{A} into (@var{QR}, @var{tau}) given by
@code{gsl_linalg_QR_decomp}. The solution is returned in @var{x}. The
residual is computed as a by-product and stored in @var{residual}.
@end deftypefun
@deftypefun int gsl_linalg_QR_QTvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v})
This function applies the matrix @math{Q^T} encoded in the decomposition
(@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q^T
v} in @var{v}. The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix @math{Q^T}.
@end deftypefun
@deftypefun int gsl_linalg_QR_Qvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v})
This function applies the matrix @math{Q} encoded in the decomposition
(@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q
v} in @var{v}. The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix @math{Q}.
@end deftypefun
@deftypefun int gsl_linalg_QR_QTmat (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_matrix * @var{A})
This function applies the matrix @math{Q^T} encoded in the decomposition
(@var{QR},@var{tau}) to the matrix @var{A}, storing the result @math{Q^T
A} in @var{A}. The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix @math{Q^T}.
@end deftypefun
@deftypefun int gsl_linalg_QR_Rsolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the triangular system @math{R x = b} for
@var{x}. It may be useful if the product @math{b' = Q^T b} has already
been computed using @code{gsl_linalg_QR_QTvec}.
@end deftypefun
@deftypefun int gsl_linalg_QR_Rsvx (const gsl_matrix * @var{QR}, gsl_vector * @var{x})
This function solves the triangular system @math{R x = b} for @var{x}
in-place. On input @var{x} should contain the right-hand side @math{b}
and is replaced by the solution on output. This function may be useful if
the product @math{b' = Q^T b} has already been computed using
@code{gsl_linalg_QR_QTvec}.
@end deftypefun
@deftypefun int gsl_linalg_QR_unpack (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_matrix * @var{R})
This function unpacks the encoded @math{QR} decomposition
(@var{QR},@var{tau}) into the matrices @var{Q} and @var{R}, where
@var{Q} is @math{M}-by-@math{M} and @var{R} is @math{M}-by-@math{N}.
@end deftypefun
@deftypefun int gsl_linalg_QR_QRsolve (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the system @math{R x = Q^T b} for @var{x}. It can
be used when the @math{QR} decomposition of a matrix is available in
unpacked form as (@var{Q}, @var{R}).
@end deftypefun
@deftypefun int gsl_linalg_QR_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, gsl_vector * @var{w}, const gsl_vector * @var{v})
This function performs a rank-1 update @math{w v^T} of the @math{QR}
decomposition (@var{Q}, @var{R}). The update is given by @math{Q'R' = Q
(R + w v^T)} where the output matrices @math{Q'} and @math{R'} are also
orthogonal and right triangular. Note that @var{w} is destroyed by the
update.
@end deftypefun
@deftypefun int gsl_linalg_R_solve (const gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the triangular system @math{R x = b} for the
@math{N}-by-@math{N} matrix @var{R}.
@end deftypefun
@deftypefun int gsl_linalg_R_svx (const gsl_matrix * @var{R}, gsl_vector * @var{x})
This function solves the triangular system @math{R x = b} in-place. On
input @var{x} should contain the right-hand side @math{b}, which is
replaced by the solution on output.
@end deftypefun
@node QR Decomposition with Column Pivoting
@section QR Decomposition with Column Pivoting
@cindex QR decomposition with column pivoting
The @math{QR} decomposition of an @math{M}-by-@math{N} matrix @math{A}
can be extended to the rank deficient case by introducing a column permutation @math{P},
@tex
\beforedisplay
$$
A P = Q R
$$
\afterdisplay
@end tex
@ifinfo
@example
A P = Q R
@end example
@end ifinfo
@noindent
The first @math{r} columns of @math{Q} form an orthonormal basis
for the range of @math{A} for a matrix with column rank @math{r}. This
decomposition can also be used to convert the linear system @math{A x =
b} into the triangular system @math{R y = Q^T b, x = P y}, which can be
solved by back-substitution and permutation. We denote the @math{QR}
decomposition with column pivoting by @math{QRP^T} since @math{A = Q R
P^T}. When @math{A} is rank deficient with @math{r = {\rm rank}(A)}, the matrix
@math{R} can be partitioned as
@tex
\beforedisplay
$$
R = \left(
\matrix{
R_{11} & R_{12} \cr
0 & R_{22} \cr
}
\right) \approx
\left(
\matrix{
R_{11} & R_{12} \cr
0 & 0 \cr
}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
R = [ R11 R12; 0 R22 ] =~ [ R11 R12; 0 0 ]
@end example
@end ifinfo
where @math{R_{11}} is @math{r}-by-@math{r} and nonsingular. In this case,
a ``basic'' least squares solution for the overdetermined system @math{A x = b}
can be obtained as
@tex
\beforedisplay
$$
x = P \left(
\matrix{
R_{11}^{-1} c_1 \cr
0 \cr
}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
x = P [ R11^-1 c1 ; 0 ]
@end example
@end ifinfo
where @math{c_1} consists of the first @math{r} elements of @math{Q^T b}.
This basic solution is not guaranteed to be the minimum norm solution unless
@math{R_{12} = 0} (see @ref{Complete Orthogonal Decomposition}).
@deftypefun int gsl_linalg_QRPT_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm})
This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
the @math{QRP^T} decomposition @math{A = Q R P^T}. On output the
diagonal and upper triangular part of the input matrix contain the
matrix @math{R}. The permutation matrix @math{P} is stored in the
permutation @var{p}. The sign of the permutation is given by
@var{signum}. It has the value @math{(-1)^n}, where @math{n} is the
number of interchanges in the permutation. The vector @var{tau} and the
columns of the lower triangular part of the matrix @var{A} contain the
Householder coefficients and vectors which encode the orthogonal matrix
@var{Q}. The vector @var{tau} must be of length @math{k=\min(M,N)}. The
matrix @math{Q} is related to these components by, @math{Q = Q_k ... Q_2
Q_1} where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the
Householder vector @math{v_i =
(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme
as used by @sc{lapack}. The vector @var{norm} is a workspace of length
@var{N} used for column pivoting.
The algorithm used to perform the decomposition is Householder QR with
column pivoting (Golub & Van Loan, @cite{Matrix Computations}, Algorithm
5.4.1).
@end deftypefun
@deftypefun int gsl_linalg_QRPT_decomp2 (const gsl_matrix * @var{A}, gsl_matrix * @var{q}, gsl_matrix * @var{r}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm})
This function factorizes the matrix @var{A} into the decomposition
@math{A = Q R P^T} without modifying @var{A} itself and storing the
output in the separate matrices @var{q} and @var{r}.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the square system @math{A x = b} using the @math{QRP^T}
decomposition of @math{A} held in (@var{QR}, @var{tau}, @var{p}) which must
have been computed previously by @code{gsl_linalg_QRPT_decomp}.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
This function solves the square system @math{A x = b} in-place using the
@math{QRP^T} decomposition of @math{A} held in
(@var{QR},@var{tau},@var{p}). On input @var{x} should contain the
right-hand side @math{b}, which is replaced by the solution on output.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_lssolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
This function finds the least squares solution to the overdetermined
system @math{A x = b} where the matrix @var{A} has more rows than
columns and is assumed to have full rank. The least squares solution minimizes
the Euclidean norm of the residual, @math{||b - A x||}. The routine requires as input
the @math{QR} decomposition of @math{A} into (@var{QR}, @var{tau}, @var{p}) given by
@code{gsl_linalg_QRPT_decomp}. The solution is returned in @var{x}. The
residual is computed as a by-product and stored in @var{residual}. For rank
deficient matrices, @code{gsl_linalg_QRPT_lssolve2} should be used instead.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_lssolve2 (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, const size_t @var{rank}, gsl_vector * @var{x}, gsl_vector * @var{residual})
This function finds the least squares solution to the overdetermined
system @math{A x = b} where the matrix @var{A} has more rows than
columns and has rank given by the input @var{rank}. If the user does not
know the rank of @math{A}, the routine @code{gsl_linalg_QRPT_rank} can be
called to estimate it. The least squares solution is
the so-called ``basic'' solution discussed above and may not be the minimum
norm solution. The routine requires as input
the @math{QR} decomposition of @math{A} into (@var{QR}, @var{tau}, @var{p}) given by
@code{gsl_linalg_QRPT_decomp}. The solution is returned in @var{x}. The
residual is computed as a by-product and stored in @var{residual}.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_QRsolve (const gsl_matrix * @var{Q}, const gsl_matrix * @var{R}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the square system @math{R P^T x = Q^T b} for
@var{x}. It can be used when the @math{QR} decomposition of a matrix is
available in unpacked form as (@var{Q}, @var{R}).
@end deftypefun
@deftypefun int gsl_linalg_QRPT_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_permutation * @var{p}, gsl_vector * @var{w}, const gsl_vector * @var{v})
This function performs a rank-1 update @math{w v^T} of the @math{QRP^T}
decomposition (@var{Q}, @var{R}, @var{p}). The update is given by
@math{Q'R' = Q (R + w v^T P)} where the output matrices @math{Q'} and
@math{R'} are also orthogonal and right triangular. Note that @var{w} is
destroyed by the update. The permutation @var{p} is not changed.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_Rsolve (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the triangular system @math{R P^T x = b} for the
@math{N}-by-@math{N} matrix @math{R} contained in @var{QR}.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_Rsvx (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
This function solves the triangular system @math{R P^T x = b} in-place
for the @math{N}-by-@math{N} matrix @math{R} contained in @var{QR}. On
input @var{x} should contain the right-hand side @math{b}, which is
replaced by the solution on output.
@end deftypefun
@deftypefun size_t gsl_linalg_QRPT_rank (const gsl_matrix * @var{QR}, const double @var{tol})
This function estimates the rank of the triangular matrix @math{R} contained in @var{QR}.
The algorithm simply counts the number of diagonal elements of @math{R} whose absolute value
is greater than the specified tolerance @var{tol}. If the input @var{tol} is negative,
a default value of @math{20 (M + N) eps(max(|diag(R)|))} is used.
@end deftypefun
@deftypefun int gsl_linalg_QRPT_rcond (const gsl_matrix * @var{QR}, double * @var{rcond}, gsl_vector * @var{work})
This function estimates the reciprocal condition number (using the 1-norm) of the @math{R} factor,
stored in the upper triangle of @var{QR}. The reciprocal condition number estimate, defined as
@math{1 / (||R||_1 \cdot ||R^{-1}||_1)}, is stored in @var{rcond}.
Additional workspace of size @math{3 N} is required in @var{work}.
@end deftypefun
@node Complete Orthogonal Decomposition
@section Complete Orthogonal Decomposition
The complete orthogonal decomposition of a @math{M}-by-@math{N} matrix
@math{A} is a generalization of the QR decomposition with column pivoting, given by
@tex
\beforedisplay
$$
A P = Q
\left(
\matrix{
R_{11} & 0 \cr
0 & 0 \cr
}
\right) Z
$$
\afterdisplay
@end tex
@ifinfo
@example
A P = Q [ R11 0 ] Z
[ 0 0 ]
@end example
@end ifinfo
@noindent
where @math{P} is a @math{N}-by-@math{N} permutation matrix,
@math{Q} is @math{M}-by-@math{M} orthogonal, @math{R_{11}} is
@math{r}-by-@math{r} upper triangular, with @math{r = {\rm rank}(A)},
and @math{Z} is @math{N}-by-@math{N} orthogonal. If @math{A}
has full rank, then @math{R_{11} = R}, @math{Z = I} and this reduces to the
QR decomposition with column pivoting. The advantage of using
the complete orthogonal decomposition for rank deficient matrices
is the ability to compute the minimum norm solution to the linear
least squares problem @math{Ax = b}, which is given by
@tex
\beforedisplay
$$
x = P Z^T
\left(
\matrix{
R_{11}^{-1} c_1 \cr
0 \cr
}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
x = P Z^T [ R11^-1 c1 ]
[ 0 ]
@end example
@end ifinfo
and the vector @math{c_1} is the first @math{r} elements of @math{Q^T b}.
@deftypefun int gsl_linalg_COD_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau_Q}, gsl_vector * @var{tau_Z}, gsl_permutation * @var{p}, size_t * @var{rank}, gsl_vector * @var{work})
@deftypefunx int gsl_linalg_COD_decomp_e (gsl_matrix * @var{A}, gsl_vector * @var{tau_Q}, gsl_vector * @var{tau_Z}, gsl_permutation * @var{p}, double @var{tol}, size_t * @var{rank}, gsl_vector * @var{work})
These functions factor the @math{M}-by-@math{N} matrix @var{A} into the decomposition @math{A = Q R Z P^T}. The rank of @var{A}
is computed as the number of diagonal elements of @math{R} greater than the tolerance @var{tol} and output in @var{rank}.
If @var{tol} is not specified, a default value is used (see @code{gsl_linalg_QRPT_rank}). On output, the permutation
matrix @math{P} is stored in @var{p}. The matrix @math{R_{11}} is stored in the upper @var{rank}-by-@var{rank} block of @var{A}.
The matrices @math{Q} and @math{Z} are encoded in packed storage in @var{A} on output. The vectors @var{tau_Q} and @var{tau_Z}
contain the Householder scalars corresponding to the matrices @math{Q} and @math{Z} respectively and must be
of length @math{k = \min(M,N)}. The vector @var{work} is additional workspace of length @math{N}.
@end deftypefun
@deftypefun int gsl_linalg_COD_lssolve (const gsl_matrix * @var{QRZ}, const gsl_vector * @var{tau_Q}, const gsl_vector * @var{tau_Z}, const gsl_permutation * @var{p}, const size_t @var{rank}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
This function finds the least squares solution to the overdetermined
system @math{A x = b} where the matrix @var{A} has more rows than
columns. The least squares solution minimizes the Euclidean norm of the
residual, @math{||b - A x||}. The routine requires as input
the @math{QRZ} decomposition of @math{A} into (@var{QRZ}, @var{tau_Q}, @var{tau_Z}, @var{p}, @var{rank})
given by @code{gsl_linalg_COD_decomp}. The solution is returned in @var{x}. The
residual is computed as a by-product and stored in @var{residual}.
@end deftypefun
@deftypefun int gsl_linalg_COD_unpack (const gsl_matrix * @var{QRZ}, const gsl_vector * @var{tau_Q}, const gsl_vector * @var{tau_Z}, const size_t @var{rank}, gsl_matrix * @var{Q}, gsl_matrix * @var{R}, gsl_matrix * @var{Z})
This function unpacks the encoded @math{QRZ} decomposition
(@var{QRZ}, @var{tau_Q}, @var{tau_Z}, @var{rank}) into the matrices
@var{Q}, @var{R}, and @var{Z}, where @var{Q} is @math{M}-by-@math{M},
@var{R} is @math{M}-by-@math{N}, and @var{Z} is @math{N}-by-@math{N}.
@end deftypefun
@deftypefun int gsl_linalg_COD_matZ (const gsl_matrix * @var{QRZ}, const gsl_vector * @var{tau_Z}, const size_t @var{rank}, gsl_matrix * @var{A}, gsl_vector * @var{work})
This function multiplies the input matrix @var{A} on the right by @var{Z},
@math{A' = A Z} using the encoded @math{QRZ} decomposition
(@var{QRZ}, @var{tau_Z}, @var{rank}). @var{A} must have @math{N} columns but may
have any number of rows. Additional workspace of length @math{M} is provided
in @var{work}.
@end deftypefun
@node Singular Value Decomposition
@section Singular Value Decomposition
@cindex SVD
@cindex singular value decomposition
A general rectangular @math{M}-by-@math{N} matrix @math{A} has a
singular value decomposition (@sc{svd}) into the product of an
@math{M}-by-@math{N} orthogonal matrix @math{U}, an @math{N}-by-@math{N}
diagonal matrix of singular values @math{S} and the transpose of an
@math{N}-by-@math{N} orthogonal square matrix @math{V},
@tex
\beforedisplay
$$
A = U S V^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = U S V^T
@end example
@end ifinfo
@noindent
The singular values
@c{$\sigma_i = S_{ii}$}
@math{\sigma_i = S_@{ii@}} are all non-negative and are
generally chosen to form a non-increasing sequence
@c{$\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_N \ge 0$}
@math{\sigma_1 >= \sigma_2 >= ... >= \sigma_N >= 0}.
The singular value decomposition of a matrix has many practical uses.
The condition number of the matrix is given by the ratio of the largest
singular value to the smallest singular value. The presence of a zero
singular value indicates that the matrix is singular. The number of
non-zero singular values indicates the rank of the matrix. In practice
singular value decomposition of a rank-deficient matrix will not produce
exact zeroes for singular values, due to finite numerical
precision. Small singular values should be edited by choosing a suitable
tolerance.
For a rank-deficient matrix, the null space of @math{A} is given by
the columns of @math{V} corresponding to the zero singular values.
Similarly, the range of @math{A} is given by columns of @math{U}
corresponding to the non-zero singular values.
Note that the routines here compute the ``thin'' version of the SVD
with @math{U} as @math{M}-by-@math{N} orthogonal matrix. This allows
in-place computation and is the most commonly-used form in practice.
Mathematically, the ``full'' SVD is defined with @math{U} as an
@math{M}-by-@math{M} orthogonal matrix and @math{S} as an
@math{M}-by-@math{N} diagonal matrix (with additional rows of zeros).
@deftypefun int gsl_linalg_SV_decomp (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work})
This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
the singular value decomposition @math{A = U S V^T} for @c{$M \ge N$}
@math{M >= N}. On output the matrix @var{A} is replaced by
@math{U}. The diagonal elements of the singular value matrix @math{S}
are stored in the vector @var{S}. The singular values are non-negative
and form a non-increasing sequence from @math{S_1} to @math{S_N}. The
matrix @var{V} contains the elements of @math{V} in untransposed
form. To form the product @math{U S V^T} it is necessary to take the
transpose of @var{V}. A workspace of length @var{N} is required in
@var{work}.
This routine uses the Golub-Reinsch SVD algorithm.
@end deftypefun
@deftypefun int gsl_linalg_SV_decomp_mod (gsl_matrix * @var{A}, gsl_matrix * @var{X}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work})
This function computes the SVD using the modified Golub-Reinsch
algorithm, which is faster for @c{$M \gg N$}
@math{M>>N}. It requires the vector @var{work} of length @var{N} and the
@math{N}-by-@math{N} matrix @var{X} as additional working space.
@end deftypefun
@deftypefun int gsl_linalg_SV_decomp_jacobi (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S})
@cindex Jacobi orthogonalization
This function computes the SVD of the @math{M}-by-@math{N} matrix @var{A}
using one-sided Jacobi orthogonalization for @c{$M \ge N$}
@math{M >= N}. The Jacobi method can compute singular values to higher
relative accuracy than Golub-Reinsch algorithms (see references for
details).
@end deftypefun
@deftypefun int gsl_linalg_SV_solve (const gsl_matrix * @var{U}, const gsl_matrix * @var{V}, const gsl_vector * @var{S}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the system @math{A x = b} using the singular value
decomposition (@var{U}, @var{S}, @var{V}) of @math{A} which must
have been computed previously with @code{gsl_linalg_SV_decomp}.
Only non-zero singular values are used in computing the solution. The
parts of the solution corresponding to singular values of zero are
ignored. Other singular values can be edited out by setting them to
zero before calling this function.
In the over-determined case where @var{A} has more rows than columns the
system is solved in the least squares sense, returning the solution
@var{x} which minimizes @math{||A x - b||_2}.
@end deftypefun
@deftypefun int gsl_linalg_SV_leverage (const gsl_matrix * @var{U}, gsl_vector * @var{h})
This function computes the statistical leverage values @math{h_i} of a matrix @math{A}
using its singular value decomposition (@var{U}, @var{S}, @var{V}) previously computed
with @code{gsl_linalg_SV_decomp}. @math{h_i} are the diagonal values of the matrix
@math{A (A^T A)^{-1} A^T} and depend only on the matrix @var{U} which is the input to
this function.
@end deftypefun
@node Cholesky Decomposition
@section Cholesky Decomposition
@cindex Cholesky decomposition
@cindex square root of a matrix, Cholesky decomposition
@cindex matrix square root, Cholesky decomposition
A symmetric, positive definite square matrix @math{A} has a Cholesky
decomposition into a product of a lower triangular matrix @math{L} and
its transpose @math{L^T},
@tex
\beforedisplay
$$
A = L L^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = L L^T
@end example
@end ifinfo
@noindent
This is sometimes referred to as taking the square-root of a matrix. The
Cholesky decomposition can only be carried out when all the eigenvalues
of the matrix are positive. This decomposition can be used to convert
the linear system @math{A x = b} into a pair of triangular systems
(@math{L y = b}, @math{L^T x = y}), which can be solved by forward and
back-substitution.
If the matrix @math{A} is near singular, it is sometimes possible to reduce
the condition number and recover a more accurate solution vector @math{x}
by scaling as
@tex
\beforedisplay
$$
\left( S A S \right) \left( S^{-1} x \right) = S b
$$
\afterdisplay
@end tex
@ifinfo
@example
( S A S ) ( S^(-1) x ) = S b
@end example
@end ifinfo
where @math{S} is a diagonal matrix whose elements are given by
@math{S_{ii} = 1/\sqrt{A_{ii}}}. This scaling is also known as
Jacobi preconditioning. There are routines below to solve
both the scaled and unscaled systems.
@deftypefun int gsl_linalg_cholesky_decomp1 (gsl_matrix * @var{A})
@deftypefunx int gsl_linalg_complex_cholesky_decomp (gsl_matrix_complex * @var{A})
These functions factorize the symmetric, positive-definite square matrix
@var{A} into the Cholesky decomposition @math{A = L L^T} (or
@c{$A = L L^{\dagger}$}
@math{A = L L^H}
for the complex case). On input, the values from the diagonal and lower-triangular
part of the matrix @var{A} are used (the upper triangular part is ignored). On output
the diagonal and lower triangular part of the input matrix @var{A} contain the matrix
@math{L}, while the upper triangular part is unmodified. If the matrix is not
positive-definite then the decomposition will fail, returning the
error code @code{GSL_EDOM}.
When testing whether a matrix is positive-definite, disable the error
handler first to avoid triggering an error.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_decomp (gsl_matrix * @var{A})
This function is now deprecated and is provided only for backward compatibility.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_solve (const gsl_matrix * @var{cholesky}, const gsl_vector * @var{b}, gsl_vector * @var{x})
@deftypefunx int gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * @var{cholesky}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x})
These functions solve the system @math{A x = b} using the Cholesky
decomposition of @math{A} held in the matrix @var{cholesky} which must
have been previously computed by @code{gsl_linalg_cholesky_decomp} or
@code{gsl_linalg_complex_cholesky_decomp}.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_svx (const gsl_matrix * @var{cholesky}, gsl_vector * @var{x})
@deftypefunx int gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * @var{cholesky}, gsl_vector_complex * @var{x})
These functions solve the system @math{A x = b} in-place using the
Cholesky decomposition of @math{A} held in the matrix @var{cholesky}
which must have been previously computed by
@code{gsl_linalg_cholesky_decomp} or
@code{gsl_linalg_complex_cholesky_decomp}. On input @var{x} should
contain the right-hand side @math{b}, which is replaced by the
solution on output.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_invert (gsl_matrix * @var{cholesky})
@deftypefunx int gsl_linalg_complex_cholesky_invert (gsl_matrix_complex * @var{cholesky})
These functions compute the inverse of a matrix from its Cholesky
decomposition @var{cholesky}, which must have been previously computed
by @code{gsl_linalg_cholesky_decomp} or
@code{gsl_linalg_complex_cholesky_decomp}. On output, the inverse is
stored in-place in @var{cholesky}.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_decomp2 (gsl_matrix * @var{A}, gsl_vector * @var{S})
This function calculates a diagonal scaling transformation @math{S} for
the symmetric, positive-definite square matrix @var{A}, and then
computes the Cholesky decomposition @math{S A S = L L^T}.
On input, the values from the diagonal and lower-triangular part of the matrix @var{A} are
used (the upper triangular part is ignored). On output the diagonal and lower triangular part
of the input matrix @var{A} contain the matrix @math{L}, while the upper triangular part
of the input matrix is overwritten with @math{L^T} (the diagonal terms being
identical for both @math{L} and @math{L^T}). If the matrix is not
positive-definite then the decomposition will fail, returning the
error code @code{GSL_EDOM}. The diagonal scale factors are stored in @var{S}
on output.
When testing whether a matrix is positive-definite, disable the error
handler first to avoid triggering an error.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_solve2 (const gsl_matrix * @var{cholesky}, const gsl_vector * @var{S}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the system @math{(S A S) (S^{-1} x) = S b} using the Cholesky
decomposition of @math{S A S} held in the matrix @var{cholesky} which must
have been previously computed by @code{gsl_linalg_cholesky_decomp2}.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_svx2 (const gsl_matrix * @var{cholesky}, const gsl_vector * @var{S}, gsl_vector * @var{x})
This function solves the system @math{(S A S) (S^{-1} x) = S b} in-place using the
Cholesky decomposition of @math{S A S} held in the matrix @var{cholesky}
which must have been previously computed by
@code{gsl_linalg_cholesky_decomp2}. On input @var{x} should
contain the right-hand side @math{b}, which is replaced by the
solution on output.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_scale (const gsl_matrix * @var{A}, gsl_vector * @var{S})
This function calculates a diagonal scaling transformation of the
symmetric, positive definite matrix @var{A}, such that
@math{S A S} has a condition number within a factor of @math{N}
of the matrix of smallest possible condition number over all
possible diagonal scalings. On output, @var{S} contains the
scale factors, given by @math{S_i = 1/\sqrt{A_{ii}}}.
For any @math{A_{ii} \le 0}, the corresponding scale factor @math{S_i}
is set to @math{1}.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_scale_apply (gsl_matrix * @var{A}, const gsl_vector * @var{S})
This function applies the scaling transformation @var{S} to the matrix @var{A}. On output,
@var{A} is replaced by @math{S A S}.
@end deftypefun
@deftypefun int gsl_linalg_cholesky_rcond (const gsl_matrix * @var{cholesky}, double * @var{rcond}, gsl_vector * @var{work})
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric positive
definite matrix @math{A}, using its Cholesky decomposition provided in @var{cholesky}.
The reciprocal condition number estimate, defined as @math{1 / (||A||_1 \cdot ||A^{-1}||_1)}, is stored
in @var{rcond}. Additional workspace of size @math{3 N} is required in @var{work}.
@end deftypefun
@node Pivoted Cholesky Decomposition
@section Pivoted Cholesky Decomposition
@cindex Cholesky decomposition, pivoted
@cindex Pivoted Cholesky Decomposition
A symmetric, positive definite square matrix @math{A} has an alternate
Cholesky decomposition into a product of a lower unit triangular matrix @math{L},
a diagonal matrix @math{D} and @math{L^T}, given by @math{L D L^T}. This is
equivalent to the Cholesky formulation discussed above, with
the standard Cholesky lower triangular factor given by @math{L D^{1 \over 2}}.
For ill-conditioned matrices, it can help to use a pivoting strategy to
prevent the entries of @math{D} and @math{L} from growing too large, and also
ensure @math{D_1 \ge D_2 \ge \cdots \ge D_n > 0}, where @math{D_i} are
the diagonal entries of @math{D}. The final decomposition is given by
@tex
\beforedisplay
$$
P A P^T = L D L^T
$$
\afterdisplay
@end tex
@ifinfo
@example
P A P^T = L D L^T
@end example
@end ifinfo
where @math{P} is a permutation matrix.
@deftypefun int gsl_linalg_pcholesky_decomp (gsl_matrix * @var{A}, gsl_permutation * @var{p})
This function factors the symmetric, positive-definite square matrix
@var{A} into the Pivoted Cholesky decomposition @math{P A P^T = L D L^T}.
On input, the values from the diagonal and lower-triangular part of the matrix @var{A} are
used to construct the factorization. On output the diagonal of the input matrix @var{A} stores
the diagonal elements of @math{D}, and the lower triangular portion of @var{A}
contains the matrix @math{L}. Since @math{L} has ones on its diagonal these
do not need to be explicitely stored. The upper triangular portion of @var{A} is
unmodified. The permutation matrix @math{P} is stored in @var{p} on output.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_solve (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the system @math{A x = b} using the Pivoted Cholesky
decomposition of @math{A} held in the matrix @var{LDLT} and permutation
@var{p} which must have been previously computed by @code{gsl_linalg_pcholesky_decomp}.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_svx (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
This function solves the system @math{A x = b} in-place using the Pivoted Cholesky
decomposition of @math{A} held in the matrix @var{LDLT} and permutation
@var{p} which must have been previously computed by @code{gsl_linalg_pcholesky_decomp}.
On input, @var{x} contains the right hand side vector @math{b} which is
replaced by the solution vector on output.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_decomp2 (gsl_matrix * @var{A}, gsl_permutation * @var{p}, gsl_vector * @var{S})
This function computes the pivoted Cholesky factorization of the matrix
@math{S A S}, where the input matrix @var{A} is symmetric and positive
definite, and the diagonal scaling matrix @var{S} is computed to reduce the
condition number of @var{A} as much as possible. See
@ref{Cholesky Decomposition} for more information on the matrix @var{S}.
The Pivoted Cholesky decomposition satisfies @math{P S A S P^T = L D L^T}.
On input, the values from the diagonal and lower-triangular part of the matrix @var{A} are
used to construct the factorization. On output the diagonal of the input matrix @var{A} stores the diagonal
elements of @math{D}, and the lower triangular portion of @var{A}
contains the matrix @math{L}. Since @math{L} has ones on its diagonal these
do not need to be explicitely stored. The upper triangular portion of @var{A}
is unmodified. The permutation matrix @math{P} is stored in @var{p} on output.
The diagonal scaling transformation is stored in @var{S} on output.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_solve2 (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, const gsl_vector * @var{S}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the system @math{(S A S) (S^{-1} x) = S b} using the Pivoted Cholesky
decomposition of @math{S A S} held in the matrix @var{LDLT}, permutation
@var{p}, and vector @var{S}, which must have been previously computed by
@code{gsl_linalg_pcholesky_decomp2}.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_svx2 (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, const gsl_vector * @var{S}, gsl_vector * @var{x})
This function solves the system @math{(S A S) (S^{-1} x) = S b} in-place using the Pivoted Cholesky
decomposition of @math{S A S} held in the matrix @var{LDLT}, permutation
@var{p} and vector @var{S}, which must have been previously computed by
@code{gsl_linalg_pcholesky_decomp2}.
On input, @var{x} contains the right hand side vector @math{b} which is
replaced by the solution vector on output.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_invert (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, gsl_matrix * @var{Ainv})
This function computes the inverse of the matrix @math{A}, using the Pivoted
Cholesky decomposition stored in @var{LDLT} and @var{p}. On output, the
matrix @var{Ainv} contains @math{A^{-1}}.
@end deftypefun
@deftypefun int gsl_linalg_pcholesky_rcond (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, double * @var{rcond}, gsl_vector * @var{work})
This function estimates the reciprocal condition number (using the 1-norm) of the symmetric positive
definite matrix @math{A}, using its pivoted Cholesky decomposition provided in @var{LDLT}.
The reciprocal condition number estimate, defined as @math{1 / (||A||_1 \cdot ||A^{-1}||_1)}, is stored
in @var{rcond}. Additional workspace of size @math{3 N} is required in @var{work}.
@end deftypefun
@node Modified Cholesky Decomposition
@section Modified Cholesky Decomposition
@cindex Cholesky decomposition, modified
@cindex Modified Cholesky Decomposition
The modified Cholesky decomposition is suitable for solving systems
@math{A x = b} where @math{A} is a symmetric indefinite matrix. Such
matrices arise in nonlinear optimization algorithms. The standard
Cholesky decomposition requires a positive definite matrix and would
fail in this case. Instead of resorting to a method like QR or SVD,
which do not take into account the symmetry of the matrix, we can
instead introduce a small perturbation to the matrix @math{A} to
make it positive definite, and then use a Cholesky decomposition on
the perturbed matrix. The resulting decomposition satisfies
@tex
\beforedisplay
$$
P (A + E) P^T = L D L^T
$$
\afterdisplay
@end tex
@ifinfo
@example
P (A + E) P^T = L D L^T
@end example
@end ifinfo
where @math{P} is a permutation matrix, @math{E} is a diagonal
perturbation matrix, @math{L} is unit lower triangular, and
@math{D} is diagonal. If @math{A} is sufficiently positive
definite, then the perturbation matrix @math{E} will be zero
and this method is equivalent to the pivoted Cholesky algorithm.
For indefinite matrices, the perturbation matrix @math{E} is
computed to ensure that @math{A + E} is positive definite and
well conditioned.
@deftypefun int gsl_linalg_mcholesky_decomp (gsl_matrix * @var{A}, gsl_permutation * @var{p}, gsl_vector * @var{E})
This function factors the symmetric, indefinite square matrix
@var{A} into the Modified Cholesky decomposition @math{P (A + E) P^T = L D L^T}.
On input, the values from the diagonal and lower-triangular part of the matrix @var{A} are
used to construct the factorization. On output the diagonal of the input matrix @var{A} stores the diagonal
elements of @math{D}, and the lower triangular portion of @var{A}
contains the matrix @math{L}. Since @math{L} has ones on its diagonal these
do not need to be explicitely stored. The upper triangular portion of @var{A}
is unmodified. The permutation matrix @math{P} is
stored in @var{p} on output. The diagonal perturbation matrix is stored in
@var{E} on output. The parameter @var{E} may be set to NULL if it is not
required.
@end deftypefun
@deftypefun int gsl_linalg_mcholesky_solve (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the perturbed system @math{(A + E) x = b} using the Cholesky
decomposition of @math{A + E} held in the matrix @var{LDLT} and permutation
@var{p} which must have been previously computed by @code{gsl_linalg_mcholesky_decomp}.
@end deftypefun
@deftypefun int gsl_linalg_mcholesky_svx (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
This function solves the perturbed system @math{(A + E) x = b} in-place using the Cholesky
decomposition of @math{A + E} held in the matrix @var{LDLT} and permutation
@var{p} which must have been previously computed by @code{gsl_linalg_mcholesky_decomp}.
On input, @var{x} contains the right hand side vector @math{b} which is
replaced by the solution vector on output.
@end deftypefun
@deftypefun int gsl_linalg_mcholesky_rcond (const gsl_matrix * @var{LDLT}, const gsl_permutation * @var{p}, double * @var{rcond}, gsl_vector * @var{work})
This function estimates the reciprocal condition number (using the 1-norm) of the perturbed matrix
@math{A + E}, using its pivoted Cholesky decomposition provided in @var{LDLT}.
The reciprocal condition number estimate, defined as @math{1 / (||A + E||_1 \cdot ||(A + E)^{-1}||_1)}, is stored
in @var{rcond}. Additional workspace of size @math{3 N} is required in @var{work}.
@end deftypefun
@node Tridiagonal Decomposition of Real Symmetric Matrices
@section Tridiagonal Decomposition of Real Symmetric Matrices
@cindex tridiagonal decomposition
A symmetric matrix @math{A} can be factorized by similarity
transformations into the form,
@tex
\beforedisplay
$$
A = Q T Q^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = Q T Q^T
@end example
@end ifinfo
@noindent
where @math{Q} is an orthogonal matrix and @math{T} is a symmetric
tridiagonal matrix.
@deftypefun int gsl_linalg_symmtd_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
This function factorizes the symmetric square matrix @var{A} into the
symmetric tridiagonal decomposition @math{Q T Q^T}. On output the
diagonal and subdiagonal part of the input matrix @var{A} contain the
tridiagonal matrix @math{T}. The remaining lower triangular part of the
input matrix contains the Householder vectors which, together with the
Householder coefficients @var{tau}, encode the orthogonal matrix
@math{Q}. This storage scheme is the same as used by @sc{lapack}. The
upper triangular part of @var{A} is not referenced.
@end deftypefun
@deftypefun int gsl_linalg_symmtd_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
This function unpacks the encoded symmetric tridiagonal decomposition
(@var{A}, @var{tau}) obtained from @code{gsl_linalg_symmtd_decomp} into
the orthogonal matrix @var{Q}, the vector of diagonal elements @var{diag}
and the vector of subdiagonal elements @var{subdiag}.
@end deftypefun
@deftypefun int gsl_linalg_symmtd_unpack_T (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
This function unpacks the diagonal and subdiagonal of the encoded
symmetric tridiagonal decomposition (@var{A}, @var{tau}) obtained from
@code{gsl_linalg_symmtd_decomp} into the vectors @var{diag} and @var{subdiag}.
@end deftypefun
@node Tridiagonal Decomposition of Hermitian Matrices
@section Tridiagonal Decomposition of Hermitian Matrices
@cindex tridiagonal decomposition
A hermitian matrix @math{A} can be factorized by similarity
transformations into the form,
@tex
\beforedisplay
$$
A = U T U^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = U T U^T
@end example
@end ifinfo
@noindent
where @math{U} is a unitary matrix and @math{T} is a real symmetric
tridiagonal matrix.
@deftypefun int gsl_linalg_hermtd_decomp (gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{tau})
This function factorizes the hermitian matrix @var{A} into the symmetric
tridiagonal decomposition @math{U T U^T}. On output the real parts of
the diagonal and subdiagonal part of the input matrix @var{A} contain
the tridiagonal matrix @math{T}. The remaining lower triangular part of
the input matrix contains the Householder vectors which, together with
the Householder coefficients @var{tau}, encode the unitary matrix
@math{U}. This storage scheme is the same as used by @sc{lapack}. The
upper triangular part of @var{A} and imaginary parts of the diagonal are
not referenced.
@end deftypefun
@deftypefun int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{tau}, gsl_matrix_complex * @var{U}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
This function unpacks the encoded tridiagonal decomposition (@var{A},
@var{tau}) obtained from @code{gsl_linalg_hermtd_decomp} into the
unitary matrix @var{U}, the real vector of diagonal elements @var{diag} and
the real vector of subdiagonal elements @var{subdiag}.
@end deftypefun
@deftypefun int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
This function unpacks the diagonal and subdiagonal of the encoded
tridiagonal decomposition (@var{A}, @var{tau}) obtained from the
@code{gsl_linalg_hermtd_decomp} into the real vectors
@var{diag} and @var{subdiag}.
@end deftypefun
@node Hessenberg Decomposition of Real Matrices
@section Hessenberg Decomposition of Real Matrices
@cindex Hessenberg decomposition
A general real matrix @math{A} can be decomposed by orthogonal
similarity transformations into the form
@tex
\beforedisplay
$$
A = U H U^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = U H U^T
@end example
@end ifinfo
where @math{U} is orthogonal and @math{H} is an upper Hessenberg matrix,
meaning that it has zeros below the first subdiagonal. The
Hessenberg reduction is the first step in the Schur decomposition
for the nonsymmetric eigenvalue problem, but has applications in
other areas as well.
@deftypefun int gsl_linalg_hessenberg_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
This function computes the Hessenberg decomposition of the matrix
@var{A} by applying the similarity transformation @math{H = U^T A U}.
On output, @math{H} is stored in the upper portion of @var{A}. The
information required to construct the matrix @math{U} is stored in
the lower triangular portion of @var{A}. @math{U} is a product
of @math{N - 2} Householder matrices. The Householder vectors
are stored in the lower portion of @var{A} (below the subdiagonal)
and the Householder coefficients are stored in the vector @var{tau}.
@var{tau} must be of length @var{N}.
@end deftypefun
@deftypefun int gsl_linalg_hessenberg_unpack (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{U})
This function constructs the orthogonal matrix @math{U} from the
information stored in the Hessenberg matrix @var{H} along with the
vector @var{tau}. @var{H} and @var{tau} are outputs from
@code{gsl_linalg_hessenberg_decomp}.
@end deftypefun
@deftypefun int gsl_linalg_hessenberg_unpack_accum (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{V})
This function is similar to @code{gsl_linalg_hessenberg_unpack}, except
it accumulates the matrix @var{U} into @var{V}, so that @math{V' = VU}.
The matrix @var{V} must be initialized prior to calling this function.
Setting @var{V} to the identity matrix provides the same result as
@code{gsl_linalg_hessenberg_unpack}. If @var{H} is order @var{N}, then
@var{V} must have @var{N} columns but may have any number of rows.
@end deftypefun
@deftypefun int gsl_linalg_hessenberg_set_zero (gsl_matrix * @var{H})
This function sets the lower triangular portion of @var{H}, below
the subdiagonal, to zero. It is useful for clearing out the
Householder vectors after calling @code{gsl_linalg_hessenberg_decomp}.
@end deftypefun
@node Hessenberg-Triangular Decomposition of Real Matrices
@section Hessenberg-Triangular Decomposition of Real Matrices
@cindex Hessenberg triangular decomposition
A general real matrix pair (@math{A}, @math{B}) can be decomposed by
orthogonal similarity transformations into the form
@tex
\beforedisplay
$$
A = U H V^T
$$
$$
B = U R V^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = U H V^T
B = U R V^T
@end example
@end ifinfo
where @math{U} and @math{V} are orthogonal, @math{H} is an upper
Hessenberg matrix, and @math{R} is upper triangular. The
Hessenberg-Triangular reduction is the first step in the generalized
Schur decomposition for the generalized eigenvalue problem.
@deftypefun int gsl_linalg_hesstri_decomp (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_matrix * @var{U}, gsl_matrix * @var{V}, gsl_vector * @var{work})
This function computes the Hessenberg-Triangular decomposition of the
matrix pair (@var{A}, @var{B}). On output, @math{H} is stored in @var{A},
and @math{R} is stored in @var{B}. If @var{U} and @var{V} are provided
(they may be null), the similarity transformations are stored in them.
Additional workspace of length @math{N} is needed in @var{work}.
@end deftypefun
@node Bidiagonalization
@section Bidiagonalization
@cindex bidiagonalization of real matrices
A general matrix @math{A} can be factorized by similarity
transformations into the form,
@tex
\beforedisplay
$$
A = U B V^T
$$
\afterdisplay
@end tex
@ifinfo
@example
A = U B V^T
@end example
@end ifinfo
@noindent
where @math{U} and @math{V} are orthogonal matrices and @math{B} is a
@math{N}-by-@math{N} bidiagonal matrix with non-zero entries only on the
diagonal and superdiagonal. The size of @var{U} is @math{M}-by-@math{N}
and the size of @var{V} is @math{N}-by-@math{N}.
@deftypefun int gsl_linalg_bidiag_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V})
This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
bidiagonal form @math{U B V^T}. The diagonal and superdiagonal of the
matrix @math{B} are stored in the diagonal and superdiagonal of @var{A}.
The orthogonal matrices @math{U} and @var{V} are stored as compressed
Householder vectors in the remaining elements of @var{A}. The
Householder coefficients are stored in the vectors @var{tau_U} and
@var{tau_V}. The length of @var{tau_U} must equal the number of
elements in the diagonal of @var{A} and the length of @var{tau_V} should
be one element shorter.
@end deftypefun
@deftypefun int gsl_linalg_bidiag_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau_U}, gsl_matrix * @var{U}, const gsl_vector * @var{tau_V}, gsl_matrix * @var{V}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag})
This function unpacks the bidiagonal decomposition of @var{A} produced by
@code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V})
into the separate orthogonal matrices @var{U}, @var{V} and the diagonal
vector @var{diag} and superdiagonal @var{superdiag}. Note that @var{U}
is stored as a compact @math{M}-by-@math{N} orthogonal matrix satisfying
@math{U^T U = I} for efficiency.
@end deftypefun
@deftypefun int gsl_linalg_bidiag_unpack2 (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V}, gsl_matrix * @var{V})
This function unpacks the bidiagonal decomposition of @var{A} produced by
@code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V})
into the separate orthogonal matrices @var{U}, @var{V} and the diagonal
vector @var{diag} and superdiagonal @var{superdiag}. The matrix @var{U}
is stored in-place in @var{A}.
@end deftypefun
@deftypefun int gsl_linalg_bidiag_unpack_B (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag})
This function unpacks the diagonal and superdiagonal of the bidiagonal
decomposition of @var{A} from @code{gsl_linalg_bidiag_decomp}, into
the diagonal vector @var{diag} and superdiagonal vector @var{superdiag}.
@end deftypefun
@node Givens Rotations
@section Givens Rotations
@cindex Givens rotation
A Givens rotation is a rotation in the plane acting on two elements
of a given vector. It can be represented in matrix form as
@tex
\beforedisplay
$$
G(i,j,\theta) =
\left(
\matrix{
1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \cr
\vdots & \ddots & \vdots & & \vdots & & \vdots \cr
0 & \ldots & \cos{\theta} & \ldots & -\sin{\theta} & \ldots & 0 \cr
\vdots & & \vdots & \ddots & \vdots & & \vdots \cr
0 & \ldots & \sin{\theta} & \ldots & \cos{\theta} & \ldots & 0 \cr
\vdots & & \vdots & & \vdots & \ddots & \vdots \cr
0 & \ldots & 0 & \ldots & 0 & \ldots & 1 \cr
}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
@end example
@end ifinfo
where the @math{\cos{\theta}} and @math{\sin{\theta}} appear at
the intersection of the @math{i}th and @math{j}th rows and columns.
When acting on a vector @math{x}, @math{G(i,j,\theta) x} performs
a rotation of the @math{(i,j)} elements of @math{x}. Givens
rotations are typically used to introduce zeros in
vectors, such as during the QR decomposition of a matrix. In this
case, it is typically desired to find @math{c} and @math{s} such that
@tex
\beforedisplay
$$
\left(
\matrix{
c & -s \cr
s & c
}
\right)
\left(
\matrix{
a \cr
b
}
\right) =
\left(
\matrix{
r \cr
0
}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
@end example
@end ifinfo
with @math{r = \sqrt{a^2 + b^2}}.
@deftypefun void gsl_linalg_givens (const double @var{a}, const double @var{b}, double * @var{c}, double * @var{s})
This function computes @math{c = \cos{\theta}} and @math{s = \sin{\theta}}
so that the Givens matrix @math{G(\theta)} acting on the
vector @math{(a,b)} produces @math{(r, 0)}, with @math{r = \sqrt{a^2 + b^2}}.
@end deftypefun
@deftypefun void gsl_linalg_givens_gv (gsl_vector * @var{v}, const size_t @var{i}, const size_t @var{j}, const double @var{c}, const double @var{s})
This function applies the Givens rotation defined by
@math{c = \cos{\theta}} and @math{s = \sin{\theta}} to the @var{i}
and @var{j} elements of @var{v}. On output,
@math{(v(i),v(j)) \leftarrow G(\theta) (v(i),v(j))}.
@end deftypefun
@node Householder Transformations
@section Householder Transformations
@cindex Householder matrix
@cindex Householder transformation
@cindex transformation, Householder
A Householder transformation is a rank-1 modification of the identity
matrix which can be used to zero out selected elements of a vector. A
Householder matrix @math{P} takes the form,
@tex
\beforedisplay
$$
P = I - \tau v v^T
$$
\afterdisplay
@end tex
@ifinfo
@example
P = I - \tau v v^T
@end example
@end ifinfo
@noindent
where @math{v} is a vector (called the @dfn{Householder vector}) and
@math{\tau = 2/(v^T v)}. The functions described in this section use the
rank-1 structure of the Householder matrix to create and apply
Householder transformations efficiently.
@deftypefun double gsl_linalg_householder_transform (gsl_vector * @var{w})
@deftypefunx gsl_complex gsl_linalg_complex_householder_transform (gsl_vector_complex * @var{w})
This function prepares a Householder transformation @math{P = I - \tau v
v^T} which can be used to zero all the elements of the input vector @var{w}
except the first. On output the Householder vector @var{v} is stored in
@var{w} and the scalar @math{\tau} is returned. The householder vector
@var{v} is normalized so that @var{v}[0] = 1, however this 1 is not
stored in the output vector. Instead, @var{w}[0] is set to
the first element of the transformed vector, so that if
@math{u = P w}, @var{w}[0] = @math{u}[0] on output and the remainder
of @math{u} is zero.
@end deftypefun
@deftypefun int gsl_linalg_householder_hm (double @var{tau}, const gsl_vector * @var{v}, gsl_matrix * @var{A})
@deftypefunx int gsl_linalg_complex_householder_hm (gsl_complex @var{tau}, const gsl_vector_complex * @var{v}, gsl_matrix_complex * @var{A})
This function applies the Householder matrix @math{P} defined by the
scalar @var{tau} and the vector @var{v} to the left-hand side of the
matrix @var{A}. On output the result @math{P A} is stored in @var{A}.
@end deftypefun
@deftypefun int gsl_linalg_householder_mh (double @var{tau}, const gsl_vector * @var{v}, gsl_matrix * @var{A})
@deftypefunx int gsl_linalg_complex_householder_mh (gsl_complex @var{tau}, const gsl_vector_complex * @var{v}, gsl_matrix_complex * @var{A})
This function applies the Householder matrix @math{P} defined by the
scalar @var{tau} and the vector @var{v} to the right-hand side of the
matrix @var{A}. On output the result @math{A P} is stored in @var{A}.
@end deftypefun
@deftypefun int gsl_linalg_householder_hv (double @var{tau}, const gsl_vector * @var{v}, gsl_vector * @var{w})
@deftypefunx int gsl_linalg_complex_householder_hv (gsl_complex @var{tau}, const gsl_vector_complex * @var{v}, gsl_vector_complex * @var{w})
This function applies the Householder transformation @math{P} defined by
the scalar @var{tau} and the vector @var{v} to the vector @var{w}. On
output the result @math{P w} is stored in @var{w}.
@end deftypefun
@comment @deftypefun int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A)
@comment This function applies the Householder transform, defined by the scalar
@comment @var{tau} and the vector @var{v}, to a matrix being build up from the
@comment identity matrix, using the first column of @var{A} as a householder vector.
@comment @end deftypefun
@node Householder solver for linear systems
@section Householder solver for linear systems
@cindex solution of linear system by Householder transformations
@cindex Householder linear solver
@deftypefun int gsl_linalg_HH_solve (gsl_matrix * @var{A}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the system @math{A x = b} directly using
Householder transformations. On output the solution is stored in @var{x}
and @var{b} is not modified. The matrix @var{A} is destroyed by the
Householder transformations.
@end deftypefun
@deftypefun int gsl_linalg_HH_svx (gsl_matrix * @var{A}, gsl_vector * @var{x})
This function solves the system @math{A x = b} in-place using
Householder transformations. On input @var{x} should contain the
right-hand side @math{b}, which is replaced by the solution on output. The
matrix @var{A} is destroyed by the Householder transformations.
@end deftypefun
@node Tridiagonal Systems
@section Tridiagonal Systems
@cindex tridiagonal systems
The functions described in this section efficiently solve symmetric,
non-symmetric and cyclic tridiagonal systems with minimal storage.
Note that the current implementations of these functions use a variant
of Cholesky decomposition, so the tridiagonal matrix must be positive
definite. For non-positive definite matrices, the functions return
the error code @code{GSL_ESING}.
@deftypefun int gsl_linalg_solve_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the general @math{N}-by-@math{N} system @math{A x =
b} where @var{A} is tridiagonal (@c{$N\geq 2$}
@math{N >= 2}). The super-diagonal and
sub-diagonal vectors @var{e} and @var{f} must be one element shorter
than the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4
case is shown below,
@tex
\beforedisplay
$$
A = \pmatrix{d_0&e_0& 0& 0\cr
f_0&d_1&e_1& 0\cr
0 &f_1&d_2&e_2\cr
0 &0 &f_2&d_3\cr}
$$
\afterdisplay
@end tex
@ifinfo
@example
A = ( d_0 e_0 0 0 )
( f_0 d_1 e_1 0 )
( 0 f_1 d_2 e_2 )
( 0 0 f_2 d_3 )
@end example
@end ifinfo
@noindent
@end deftypefun
@deftypefun int gsl_linalg_solve_symm_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the general @math{N}-by-@math{N} system @math{A x =
b} where @var{A} is symmetric tridiagonal (@c{$N\geq 2$}
@math{N >= 2}). The off-diagonal vector
@var{e} must be one element shorter than the diagonal vector @var{diag}.
The form of @var{A} for the 4-by-4 case is shown below,
@tex
\beforedisplay
$$
A = \pmatrix{d_0&e_0& 0& 0\cr
e_0&d_1&e_1& 0\cr
0 &e_1&d_2&e_2\cr
0 &0 &e_2&d_3\cr}
$$
\afterdisplay
@end tex
@ifinfo
@example
A = ( d_0 e_0 0 0 )
( e_0 d_1 e_1 0 )
( 0 e_1 d_2 e_2 )
( 0 0 e_2 d_3 )
@end example
@end ifinfo
@end deftypefun
@deftypefun int gsl_linalg_solve_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the general @math{N}-by-@math{N} system @math{A x =
b} where @var{A} is cyclic tridiagonal (@c{$N\geq 3$}
@math{N >= 3}). The cyclic super-diagonal and
sub-diagonal vectors @var{e} and @var{f} must have the same number of
elements as the diagonal vector @var{diag}. The form of @var{A} for the
4-by-4 case is shown below,
@tex
\beforedisplay
$$
A = \pmatrix{d_0&e_0& 0 &f_3\cr
f_0&d_1&e_1& 0 \cr
0 &f_1&d_2&e_2\cr
e_3& 0 &f_2&d_3\cr}
$$
\afterdisplay
@end tex
@ifinfo
@example
A = ( d_0 e_0 0 f_3 )
( f_0 d_1 e_1 0 )
( 0 f_1 d_2 e_2 )
( e_3 0 f_2 d_3 )
@end example
@end ifinfo
@end deftypefun
@deftypefun int gsl_linalg_solve_symm_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x})
This function solves the general @math{N}-by-@math{N} system @math{A x =
b} where @var{A} is symmetric cyclic tridiagonal (@c{$N\geq 3$}
@math{N >= 3}). The cyclic
off-diagonal vector @var{e} must have the same number of elements as the
diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is
shown below,
@tex
\beforedisplay
$$
A = \pmatrix{d_0&e_0& 0 &e_3\cr
e_0&d_1&e_1& 0 \cr
0 &e_1&d_2&e_2\cr
e_3& 0 &e_2&d_3\cr}
$$
\afterdisplay
@end tex
@ifinfo
@example
A = ( d_0 e_0 0 e_3 )
( e_0 d_1 e_1 0 )
( 0 e_1 d_2 e_2 )
( e_3 0 e_2 d_3 )
@end example
@end ifinfo
@end deftypefun
@node Triangular Systems
@section Triangular Systems
@cindex triangular systems
@deftypefun int gsl_linalg_tri_upper_invert (gsl_matrix * @var{T})
@deftypefunx int gsl_linalg_tri_lower_invert (gsl_matrix * @var{T})
@deftypefunx int gsl_linalg_tri_upper_unit_invert (gsl_matrix * @var{T})
@deftypefunx int gsl_linalg_tri_lower_unit_invert (gsl_matrix * @var{T})
These functions calculate the in-place inverse of the triangular matrix @var{T}. When
the @code{upper} prefix is specified, then the upper triangle of @var{T} is used, and when
the @code{lower} prefix is specified, the lower triangle is used. If the @code{unit}
prefix is specified, then the diagonal elements of the matrix @var{T} are taken as
unity and are not referenced. Otherwise the diagonal elements are used in the inversion.
@end deftypefun
@deftypefun int gsl_linalg_tri_upper_rcond (const gsl_matrix * @var{T}, double * @var{rcond}, gsl_vector * @var{work})
@deftypefunx int gsl_linalg_tri_lower_rcond (const gsl_matrix * @var{T}, double * @var{rcond}, gsl_vector * @var{work})
These functions estimate the reciprocal condition number, in the 1-norm, of the upper or lower
@math{N}-by-@math{N} triangular matrix @var{T}. The reciprocal condition number
is stored in @var{rcond} on output, and is defined by @math{1 / (||T||_1 \cdot ||T^{-1}||_1)}.
Additional workspace of size @math{3 N} is required in @var{work}.
@end deftypefun
@node Balancing
@section Balancing
@cindex balancing matrices
The process of balancing a matrix applies similarity transformations
to make the rows and columns have comparable norms. This is
useful, for example, to reduce roundoff errors in the solution
of eigenvalue problems. Balancing a matrix @math{A} consists
of replacing @math{A} with a similar matrix
@tex
\beforedisplay
$$
A' = D^{-1} A D
$$
\afterdisplay
@end tex
@ifinfo
@example
A' = D^(-1) A D
@end example
@end ifinfo
where @math{D} is a diagonal matrix whose entries are powers
of the floating point radix.
@deftypefun int gsl_linalg_balance_matrix (gsl_matrix * @var{A}, gsl_vector * @var{D})
This function replaces the matrix @var{A} with its balanced counterpart
and stores the diagonal elements of the similarity transformation
into the vector @var{D}.
@end deftypefun
@node Linear Algebra Examples
@section Examples
The following program solves the linear system @math{A x = b}. The
system to be solved is,
@tex
\beforedisplay
$$
\left(
\matrix{0.18& 0.60& 0.57& 0.96\cr
0.41& 0.24& 0.99& 0.58\cr
0.14& 0.30& 0.97& 0.66\cr
0.51& 0.13& 0.19& 0.85}
\right)
\left(
\matrix{x_0\cr
x_1\cr
x_2\cr
x_3}
\right)
=
\left(
\matrix{1.0\cr
2.0\cr
3.0\cr
4.0}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
[ 0.18 0.60 0.57 0.96 ] [x0] [1.0]
[ 0.41 0.24 0.99 0.58 ] [x1] = [2.0]
[ 0.14 0.30 0.97 0.66 ] [x2] [3.0]
[ 0.51 0.13 0.19 0.85 ] [x3] [4.0]
@end example
@end ifinfo
@noindent
and the solution is found using LU decomposition of the matrix @math{A}.
@example
@verbatiminclude examples/linalglu.c
@end example
@noindent
Here is the output from the program,
@example
@verbatiminclude examples/linalglu.txt
@end example
@noindent
This can be verified by multiplying the solution @math{x} by the
original matrix @math{A} using @sc{gnu octave},
@example
octave> A = [ 0.18, 0.60, 0.57, 0.96;
0.41, 0.24, 0.99, 0.58;
0.14, 0.30, 0.97, 0.66;
0.51, 0.13, 0.19, 0.85 ];
octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377];
octave> A * x
ans =
1.0000
2.0000
3.0000
4.0000
@end example
@noindent
This reproduces the original right-hand side vector, @math{b}, in
accordance with the equation @math{A x = b}.
@node Linear Algebra References and Further Reading
@section References and Further Reading
Further information on the algorithms described in this section can be
found in the following book,
@itemize @w{}
@item
G. H. Golub, C. F. Van Loan, @cite{Matrix Computations} (3rd Ed, 1996),
Johns Hopkins University Press, ISBN 0-8018-5414-8.
@end itemize
@noindent
The @sc{lapack} library is described in the following manual,
@itemize @w{}
@item
@cite{LAPACK Users' Guide} (Third Edition, 1999), Published by SIAM,
ISBN 0-89871-447-8.
@uref{http://www.netlib.org/lapack}
@end itemize
@noindent
The @sc{lapack} source code can be found at the website above, along
with an online copy of the users guide.
@noindent
The Modified Golub-Reinsch algorithm is described in the following paper,
@itemize @w{}
@item
T.F. Chan, ``An Improved Algorithm for Computing the Singular Value
Decomposition'', @cite{ACM Transactions on Mathematical Software}, 8
(1982), pp 72--83.
@end itemize
@noindent
The Jacobi algorithm for singular value decomposition is described in
the following papers,
@itemize @w{}
@item
J.C. Nash, ``A one-sided transformation method for the singular value
decomposition and algebraic eigenproblem'', @cite{Computer Journal},
Volume 18, Number 1 (1975), p 74--76
@item
J.C. Nash and S. Shlien ``Simple algorithms for the partial singular
value decomposition'', @cite{Computer Journal}, Volume 30 (1987), p
268--275.
@item
James Demmel, Kre@v{s}imir Veseli@'c, ``Jacobi's Method is more accurate than
QR'', @cite{Lapack Working Note 15} (LAWN-15), October 1989. Available
from netlib, @uref{http://www.netlib.org/lapack/} in the @code{lawns} or
@code{lawnspdf} directories.
@end itemize
@noindent
The algorithm for estimating a matrix condition number is described in
the following paper,
@itemize @w{}
@item
N. J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
@end itemize
|