File: ode-initval.texi

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (780 lines) | stat: -rw-r--r-- 31,917 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
@cindex differential equations, initial value problems
@cindex initial value problems, differential equations
@cindex ordinary differential equations, initial value problem
@cindex ODEs, initial value problems
This chapter describes functions for solving ordinary differential
equation (ODE) initial value problems.  The library provides a variety
of low-level methods, such as Runge-Kutta and Bulirsch-Stoer routines,
and higher-level components for adaptive step-size control. The
components can be combined by the user to achieve the desired
solution, with full access to any intermediate steps. A driver object
can be used as a high level wrapper for easy use of low level
functions.

These functions are declared in the header file @file{gsl_odeiv2.h}.
This is a new interface in version 1.15 and uses the prefix
@code{gsl_odeiv2} for all functions.  It is recommended over the
previous @code{gsl_odeiv} implementation defined in @file{gsl_odeiv.h}
The old interface has been retained under the original name for
backwards compatibility.

@menu
* Defining the ODE System::     
* Stepping Functions::          
* Adaptive Step-size Control::  
* Evolution::                   
* Driver::
* ODE Example programs::        
* ODE References and Further Reading::  
@end menu

@node Defining the ODE System
@section Defining the ODE System

The routines solve the general @math{n}-dimensional first-order system,
@tex
\beforedisplay
$$
{dy_i(t) \over dt} = f_i (t, y_1(t), \dots y_n(t))
$$
\afterdisplay
@end tex
@ifinfo

@example
dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t))
@end example

@end ifinfo
@noindent
for @math{i = 1, \dots, n}.  The stepping functions rely on the vector
of derivatives @math{f_i} and the Jacobian matrix, 
@c{$J_{ij} = \partial f_i(t, y(t)) / \partial y_j$}
@math{J_@{ij@} = df_i(t,y(t)) / dy_j}. 
A system of equations is defined using the @code{gsl_odeiv2_system}
datatype.

@deftp {Data Type} gsl_odeiv2_system
This data type defines a general ODE system with arbitrary parameters.

@table @code
@item int (* function) (double t, const double y[], double dydt[], void * params)
This function should store the vector elements
@c{$f_i(t,y,\hbox{\it params})$}
@math{f_i(t,y,params)} in the array @var{dydt},
for arguments (@var{t},@var{y}) and parameters @var{params}.

The function should return @code{GSL_SUCCESS} if the calculation was
completed successfully. Any other return value indicates an error. A
special return value @code{GSL_EBADFUNC} causes @code{gsl_odeiv2}
routines to immediately stop and return. If @code{function} 
is modified (for example contents of @var{params}), the user must call an
appropriate reset function (@code{gsl_odeiv2_driver_reset}, 
@code{gsl_odeiv2_evolve_reset} or @code{gsl_odeiv2_step_reset}) 
before continuing. Use return values
distinct from standard GSL error codes to distinguish your function as
the source of the error.

@item  int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);
@cindex Jacobian matrix, ODEs
This function should store the vector of derivative elements
@c{$\partial f_i(t,y,params) / \partial t$} @math{df_i(t,y,params)/dt}
in the array @var{dfdt} and the Jacobian matrix @c{$J_{ij}$}
@math{J_@{ij@}} in the array @var{dfdy}, regarded as a row-ordered
matrix @code{J(i,j) = dfdy[i * dimension + j]} where @code{dimension}
is the dimension of the system. 

Not all of the stepper algorithms of @code{gsl_odeiv2} make use of the
Jacobian matrix, so it may not be necessary to provide this function
(the @code{jacobian} element of the struct can be replaced by a null
pointer for those algorithms).

The function should return @code{GSL_SUCCESS} if the calculation was
completed successfully. Any other return value indicates an error. A
special return value @code{GSL_EBADFUNC} causes @code{gsl_odeiv2}
routines to immediately stop and return. If @code{jacobian} 
is modified (for example contents of @var{params}), the user must call an
appropriate reset function (@code{gsl_odeiv2_driver_reset}, 
@code{gsl_odeiv2_evolve_reset} or @code{gsl_odeiv2_step_reset}) 
before continuing. Use return values
distinct from standard GSL error codes to distinguish your function as
the source of the error.

@item size_t dimension;
This is the dimension of the system of equations.

@item void * params
This is a pointer to the arbitrary parameters of the system.
@end table
@end deftp

@node Stepping Functions
@section Stepping Functions

The lowest level components are the @dfn{stepping functions} which
advance a solution from time @math{t} to @math{t+h} for a fixed
step-size @math{h} and estimate the resulting local error.

@deftypefun {gsl_odeiv2_step *} gsl_odeiv2_step_alloc (const gsl_odeiv2_step_type * @var{T}, size_t @var{dim})
@tindex gsl_odeiv2_step
@tindex gsl_odeiv2_step_type
This function returns a pointer to a newly allocated instance of a
stepping function of type @var{T} for a system of @var{dim}
dimensions. Please note that if you use a stepper method that
requires access to a driver object, it is advisable to use a driver
allocation method, which automatically allocates a stepper, too.
@end deftypefun

@deftypefun int gsl_odeiv2_step_reset (gsl_odeiv2_step * @var{s})
This function resets the stepping function @var{s}.  It should be used
whenever the next use of @var{s} will not be a continuation of a
previous step.
@end deftypefun

@deftypefun void gsl_odeiv2_step_free (gsl_odeiv2_step * @var{s})
This function frees all the memory associated with the stepping function
@var{s}.
@end deftypefun

@deftypefun {const char *} gsl_odeiv2_step_name (const gsl_odeiv2_step * @var{s})
This function returns a pointer to the name of the stepping function.
For example,

@example
printf ("step method is '%s'\n",
         gsl_odeiv2_step_name (s));
@end example

@noindent
would print something like @code{step method is 'rkf45'}.
@end deftypefun

@deftypefun {unsigned int} gsl_odeiv2_step_order (const gsl_odeiv2_step * @var{s})
This function returns the order of the stepping function on the previous
step. The order can vary if the stepping function itself is adaptive.
@end deftypefun

@deftypefun int gsl_odeiv2_step_set_driver (gsl_odeiv2_step * @var{s}, const gsl_odeiv2_driver * @var{d})
This function sets a pointer of the driver object @var{d} for stepper
@var{s}, to allow the stepper to access control (and evolve) object
through the driver object. This is a requirement for some steppers, to
get the desired error level for internal iteration of
stepper. Allocation of a driver object calls this function
automatically.
@end deftypefun

@deftypefun int gsl_odeiv2_step_apply (gsl_odeiv2_step * @var{s}, double @var{t}, double @var{h}, double @var{y}[], double @var{yerr}[], const double @var{dydt_in}[], double @var{dydt_out}[], const gsl_odeiv2_system * @var{sys})
This function applies the stepping function @var{s} to the system of
equations defined by @var{sys}, using the step-size @var{h} to advance
the system from time @var{t} and state @var{y} to time @var{t}+@var{h}.
The new state of the system is stored in @var{y} on output, with an
estimate of the absolute error in each component stored in @var{yerr}.
If the argument @var{dydt_in} is not null it should point an array
containing the derivatives for the system at time @var{t} on input. This
is optional as the derivatives will be computed internally if they are
not provided, but allows the reuse of existing derivative information.
On output the new derivatives of the system at time @var{t}+@var{h} will
be stored in @var{dydt_out} if it is not null.

The stepping function returns @code{GSL_FAILURE} if it is unable to
compute the requested step. Also, if the user-supplied functions
defined in the system @var{sys} return a status other than
@code{GSL_SUCCESS} the step will be aborted. In that case, the
elements of @var{y} will be restored to their pre-step values and the
error code from the user-supplied function will be returned. Failure
may be due to a singularity in the system or too large step-size
@var{h}. In that case the step should be attempted again with a
smaller step-size, e.g. @math{@var{h}/2}.

If the driver object is not appropriately set via
@code{gsl_odeiv2_step_set_driver} for those steppers that need it, the
stepping function returns @code{GSL_EFAULT}. If the user-supplied
functions defined in the system @var{sys} returns @code{GSL_EBADFUNC},
the function returns immediately with the same return code. In this
case the user must call @code{gsl_odeiv2_step_reset} before calling
this function again.

@end deftypefun

The following algorithms are available,

@deffn {Step Type} gsl_odeiv2_step_rk2
@cindex RK2, Runge-Kutta method
@cindex Runge-Kutta methods, ordinary differential equations
Explicit embedded Runge-Kutta (2, 3) method.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rk4
@cindex RK4, Runge-Kutta method
Explicit 4th order (classical) Runge-Kutta. Error estimation is
carried out by the step doubling method. For more efficient estimate
of the error, use the embedded methods described below.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rkf45
@cindex Fehlberg method, differential equations
@cindex RKF45, Runge-Kutta-Fehlberg method
Explicit embedded Runge-Kutta-Fehlberg (4, 5) method.  This method is
a good general-purpose integrator.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rkck 
@cindex Runge-Kutta Cash-Karp method
@cindex Cash-Karp, Runge-Kutta method
Explicit embedded Runge-Kutta Cash-Karp (4, 5) method.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rk8pd  
@cindex Runge-Kutta Prince-Dormand method
@cindex Prince-Dormand, Runge-Kutta method
Explicit embedded Runge-Kutta Prince-Dormand (8, 9) method.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rk1imp 
@cindex Implicit Euler method
Implicit Gaussian first order Runge-Kutta. Also known as implicit
Euler or backward Euler method. Error estimation is carried out by the
step doubling method. This algorithm requires the Jacobian and 
access to the driver object via @code{gsl_odeiv2_step_set_driver}.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rk2imp  
@cindex Implicit Runge-Kutta method
Implicit Gaussian second order Runge-Kutta. Also known as implicit
mid-point rule. Error estimation is carried out by the step doubling
method. This stepper requires the Jacobian and access to the driver
object via @code{gsl_odeiv2_step_set_driver}.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_rk4imp  
Implicit Gaussian 4th order Runge-Kutta. Error estimation is carried
out by the step doubling method. This algorithm requires the Jacobian
and access to the driver object via @code{gsl_odeiv2_step_set_driver}.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_bsimp   
@cindex Bulirsch-Stoer method
@cindex Bader and Deuflhard, Bulirsch-Stoer method.
@cindex Deuflhard and Bader, Bulirsch-Stoer method.
Implicit Bulirsch-Stoer method of Bader and Deuflhard. The method is
generally suitable for stiff problems. This stepper requires the
Jacobian.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_msadams  
@cindex Adams method
@cindex multistep methods, ODEs
@cindex predictor-corrector method, ODEs
@cindex Nordsieck form
A variable-coefficient linear multistep Adams method in Nordsieck
form. This stepper uses explicit Adams-Bashforth (predictor) and
implicit Adams-Moulton (corrector) methods in @math{P(EC)^m}
functional iteration mode. Method order varies dynamically between 1
and 12. This stepper requires the access to the driver object via
@code{gsl_odeiv2_step_set_driver}.
@end deffn

@deffn {Step Type} gsl_odeiv2_step_msbdf
@cindex BDF method
A variable-coefficient linear multistep backward differentiation
formula (BDF) method in Nordsieck form. This stepper uses the explicit
BDF formula as predictor and implicit BDF formula as corrector. A
modified Newton iteration method is used to solve the system of
non-linear equations. Method order varies dynamically between 1 and
5. The method is generally suitable for stiff problems. This stepper
requires the Jacobian and the access to the driver object via
@code{gsl_odeiv2_step_set_driver}.
@end deffn

@node Adaptive Step-size Control
@section Adaptive Step-size Control
@cindex Adaptive step-size control, differential equations

The control function examines the proposed change to the solution
produced by a stepping function and attempts to determine the optimal
step-size for a user-specified level of error.

@deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_standard_new (double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt})
@tindex gsl_odeiv2_control
@tindex gsl_odeiv2_control_type
The standard control object is a four parameter heuristic based on
absolute and relative errors @var{eps_abs} and @var{eps_rel}, and
scaling factors @var{a_y} and @var{a_dydt} for the system state
@math{y(t)} and derivatives @math{y'(t)} respectively.

The step-size adjustment procedure for this method begins by computing
the desired error level @math{D_i} for each component,
@tex
\beforedisplay
$$
D_i = \epsilon_{abs} + \epsilon_{rel} * (a_{y} |y_i| + a_{dydt} h |y\prime_i|)
$$
\afterdisplay
@end tex
@ifinfo

@example
D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y\prime_i|)
@end example

@end ifinfo
@noindent
and comparing it with the observed error @math{E_i = |yerr_i|}.  If the
observed error @var{E} exceeds the desired error level @var{D} by more
than 10% for any component then the method reduces the step-size by an
appropriate factor,
@tex
\beforedisplay
$$
h_{new} = h_{old} * S * (E/D)^{-1/q}
$$
\afterdisplay
@end tex
@ifinfo

@example
h_new = h_old * S * (E/D)^(-1/q)
@end example

@end ifinfo
@noindent
where @math{q} is the consistency order of the method (e.g. @math{q=4} for
4(5) embedded RK), and @math{S} is a safety factor of 0.9. The ratio
@math{E/D} is taken to be the maximum of the ratios
@math{E_i/D_i}. 

If the observed error @math{E} is less than 50% of the desired error
level @var{D} for the maximum ratio @math{E_i/D_i} then the algorithm
takes the opportunity to increase the step-size to bring the error in
line with the desired level,
@tex
\beforedisplay
$$
h_{new} = h_{old} * S * (E/D)^{-1/(q+1)}
$$
\afterdisplay
@end tex
@ifinfo

@example
h_new = h_old * S * (E/D)^(-1/(q+1))
@end example

@end ifinfo
@noindent
This encompasses all the standard error scaling methods. To avoid
uncontrolled changes in the stepsize, the overall scaling factor is
limited to the range @math{1/5} to 5.
@end deftypefun

@deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_y_new (double @var{eps_abs}, double @var{eps_rel})
This function creates a new control object which will keep the local
error on each step within an absolute error of @var{eps_abs} and
relative error of @var{eps_rel} with respect to the solution @math{y_i(t)}.
This is equivalent to the standard control object with @var{a_y}=1 and
@var{a_dydt}=0.
@end deftypefun

@deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_yp_new (double @var{eps_abs}, double @var{eps_rel})
This function creates a new control object which will keep the local
error on each step within an absolute error of @var{eps_abs} and
relative error of @var{eps_rel} with respect to the derivatives of the
solution @math{y'_i(t)}.  This is equivalent to the standard control
object with @var{a_y}=0 and @var{a_dydt}=1.
@end deftypefun


@deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_scaled_new (double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt}, const double @var{scale_abs}[], size_t @var{dim})
This function creates a new control object which uses the same algorithm
as @code{gsl_odeiv2_control_standard_new} but with an absolute error
which is scaled for each component by the array @var{scale_abs}.
The formula for @math{D_i} for this control object is,
@tex
\beforedisplay
$$
D_i = \epsilon_{abs} s_i + \epsilon_{rel} * (a_{y} |y_i| + a_{dydt} h |y\prime_i|)
$$
\afterdisplay
@end tex
@ifinfo

@example
D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y\prime_i|)
@end example

@end ifinfo
@noindent
where @math{s_i} is the @math{i}-th component of the array @var{scale_abs}.
The same error control heuristic is used by the Matlab @sc{ode} suite. 
@end deftypefun

@deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_alloc (const gsl_odeiv2_control_type * @var{T})
This function returns a pointer to a newly allocated instance of a
control function of type @var{T}.  This function is only needed for
defining new types of control functions.  For most purposes the standard
control functions described above should be sufficient. 
@end deftypefun

@deftypefun int gsl_odeiv2_control_init (gsl_odeiv2_control * @var{c}, double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt})
This function initializes the control function @var{c} with the
parameters @var{eps_abs} (absolute error), @var{eps_rel} (relative
error), @var{a_y} (scaling factor for y) and @var{a_dydt} (scaling
factor for derivatives).
@end deftypefun

@deftypefun void gsl_odeiv2_control_free (gsl_odeiv2_control * @var{c})
This function frees all the memory associated with the control function
@var{c}.
@end deftypefun

@deftypefun int gsl_odeiv2_control_hadjust (gsl_odeiv2_control * @var{c}, gsl_odeiv2_step * @var{s}, const double @var{y}[], const double @var{yerr}[], const double @var{dydt}[], double * @var{h})
This function adjusts the step-size @var{h} using the control function
@var{c}, and the current values of @var{y}, @var{yerr} and @var{dydt}.
The stepping function @var{step} is also needed to determine the order
of the method.  If the error in the y-values @var{yerr} is found to be
too large then the step-size @var{h} is reduced and the function returns
@code{GSL_ODEIV_HADJ_DEC}.  If the error is sufficiently small then
@var{h} may be increased and @code{GSL_ODEIV_HADJ_INC} is returned.  The
function returns @code{GSL_ODEIV_HADJ_NIL} if the step-size is
unchanged.  The goal of the function is to estimate the largest
step-size which satisfies the user-specified accuracy requirements for
the current point.
@end deftypefun

@deftypefun {const char *} gsl_odeiv2_control_name (const gsl_odeiv2_control * @var{c})
This function returns a pointer to the name of the control function.
For example,

@example
printf ("control method is '%s'\n", 
        gsl_odeiv2_control_name (c));
@end example

@noindent
would print something like @code{control method is 'standard'}
@end deftypefun

@deftypefun int gsl_odeiv2_control_errlevel (gsl_odeiv2_control * @var{c}, const double @var{y}, const double @var{dydt}, const double @var{h}, const size_t @var{ind}, double * @var{errlev})
This function calculates the desired error level of the @var{ind}-th component to @var{errlev}. It requires the value (@var{y}) and value of the derivative (@var{dydt}) of the component, and the current step size @var{h}.
@end deftypefun

@deftypefun int gsl_odeiv2_control_set_driver (gsl_odeiv2_control * @var{c}, const gsl_odeiv2_driver * @var{d})
This function sets a pointer of the driver object @var{d} for control
object @var{c}.
@end deftypefun

@node Evolution
@section Evolution

The evolution function combines the results of a stepping function and
control function to reliably advance the solution forward one step
using an acceptable step-size.

@deftypefun {gsl_odeiv2_evolve *} gsl_odeiv2_evolve_alloc (size_t @var{dim})
@tindex gsl_odeiv2_evolve
This function returns a pointer to a newly allocated instance of an
evolution function for a system of @var{dim} dimensions.
@end deftypefun

@deftypefun int gsl_odeiv2_evolve_apply (gsl_odeiv2_evolve * @var{e}, gsl_odeiv2_control * @var{con}, gsl_odeiv2_step * @var{step}, const gsl_odeiv2_system * @var{sys}, double * @var{t}, double @var{t1}, double * @var{h}, double @var{y}[])
This function advances the system (@var{e}, @var{sys}) from time
@var{t} and position @var{y} using the stepping function @var{step}.
The new time and position are stored in @var{t} and @var{y} on output.

The initial step-size is taken as @var{h}. The control function
@var{con} is applied to check whether the local error estimated by the
stepping function @var{step} using step-size @var{h} exceeds the
required error tolerance. If the error is too high, the step is
retried by calling @var{step} with a decreased step-size. This process
is continued until an acceptable step-size is found. An estimate of
the local error for the step can be obtained from the components of
the array @code{@var{e}->yerr[]}.

If the user-supplied functions defined in the system @var{sys} returns
@code{GSL_EBADFUNC}, the function returns immediately with the same
return code. In this case the user must call
@code{gsl_odeiv2_step_reset} and
@code{gsl_odeiv2_evolve_reset} before calling this function again.

Otherwise, if the user-supplied functions defined in the system
@var{sys} or the stepping function @var{step} return a status other
than @code{GSL_SUCCESS}, the step is retried with a decreased
step-size. If the step-size decreases below machine precision, a
status of @code{GSL_FAILURE} is returned if the user functions
returned @code{GSL_SUCCESS}. Otherwise the value returned by user
function is returned. If no acceptable step can be made, @var{t} and
@var{y} will be restored to their pre-step values and @var{h} contains
the final attempted step-size.

If the step is successful the function returns a suggested step-size
for the next step in @var{h}. The maximum time @var{t1} is guaranteed
not to be exceeded by the time-step. On the final time-step the value
of @var{t} will be set to @var{t1} exactly.
@end deftypefun

@deftypefun int gsl_odeiv2_evolve_apply_fixed_step (gsl_odeiv2_evolve * @var{e}, gsl_odeiv2_control * @var{con}, gsl_odeiv2_step * @var{step}, const gsl_odeiv2_system * @var{sys}, double * @var{t}, const double @var{h}, double @var{y}[])
This function advances the ODE-system (@var{e}, @var{sys}, @var{con})
from time @var{t} and position @var{y} using the stepping function
@var{step} by a specified step size @var{h}. If the local error
estimated by the stepping function exceeds the desired error level,
the step is not taken and the function returns
@code{GSL_FAILURE}. Otherwise the value returned by user function is
returned.
@end deftypefun

@deftypefun int gsl_odeiv2_evolve_reset (gsl_odeiv2_evolve * @var{e})
This function resets the evolution function @var{e}.  It should be used
whenever the next use of @var{e} will not be a continuation of a
previous step.
@end deftypefun

@deftypefun void gsl_odeiv2_evolve_free (gsl_odeiv2_evolve * @var{e})
This function frees all the memory associated with the evolution function
@var{e}.
@end deftypefun

@deftypefun int gsl_odeiv2_evolve_set_driver (gsl_odeiv2_evolve * @var{e}, const gsl_odeiv2_driver * @var{d})
This function sets a pointer of the driver object @var{d} for evolve
object @var{e}.
@end deftypefun


@cindex discontinuities, in ODE systems
If a system has discontinuous changes in the derivatives at known
points, it is advisable to evolve the system between each discontinuity
in sequence.  For example, if a step-change in an external driving
force occurs at times @math{t_a, t_b} and @math{t_c} then evolution
should be carried out over the ranges @math{(t_0,t_a)},
@math{(t_a,t_b)}, @math{(t_b,t_c)}, and @math{(t_c,t_1)} separately
and not directly over the range @math{(t_0,t_1)}.

@node Driver
@section Driver

The driver object is a high level wrapper that combines the evolution,
control and stepper objects for easy use.

@deftypefun {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_y_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel})
@deftypefunx {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_yp_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel})
@deftypefunx {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_standard_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel}, const double @var{a_y}, const double @var{a_dydt})
@deftypefunx {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_scaled_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel}, const double @var{a_y}, const double @var{a_dydt}, const double @var{scale_abs}[])
These functions return a pointer to a newly allocated instance of a
driver object. The functions automatically allocate and initialise the
evolve, control and stepper objects for ODE system @var{sys} using
stepper type @var{T}. The initial step size is given in
@var{hstart}. The rest of the arguments follow the syntax and
semantics of the control functions with same name
(@code{gsl_odeiv2_control_*_new}).
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_set_hmin (gsl_odeiv2_driver * @var{d}, const double @var{hmin})
The function sets a minimum for allowed step size @var{hmin} for
driver @var{d}. Default value is 0.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_set_hmax (gsl_odeiv2_driver * @var{d}, const double @var{hmax})
The function sets a maximum for allowed step size @var{hmax} for
driver @var{d}. Default value is @code{GSL_DBL_MAX}.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_set_nmax (gsl_odeiv2_driver * @var{d}, const unsigned long int @var{nmax})
The function sets a maximum for allowed number of steps @var{nmax} for
driver @var{d}. Default value of 0 sets no limit for steps.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_apply (gsl_odeiv2_driver * @var{d}, double * @var{t}, const double @var{t1}, double @var{y}[])
This function evolves the driver system @var{d} from @var{t} to
@var{t1}. Initially vector @var{y} should contain the values of
dependent variables at point @var{t}. If the function is unable to
complete the calculation, an error code from
@code{gsl_odeiv2_evolve_apply} is returned, and @var{t} and @var{y}
contain the values from last successful step. 

If maximum number of steps is reached, a value of @code{GSL_EMAXITER}
is returned. If the step size drops below minimum value, the function
returns with @code{GSL_ENOPROG}. If the user-supplied functions
defined in the system @var{sys} returns @code{GSL_EBADFUNC}, the
function returns immediately with the same return code. In this case
the user must call @code{gsl_odeiv2_driver_reset} before calling this
function again.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_apply_fixed_step (gsl_odeiv2_driver * @var{d}, double * @var{t}, const double @var{h}, const unsigned long int @var{n}, double @var{y}[])
This function evolves the driver system @var{d} from @var{t} with
@var{n} steps of size @var{h}. If the function is unable to complete
the calculation, an error code from
@code{gsl_odeiv2_evolve_apply_fixed_step} is returned, and @var{t} and
@var{y} contain the values from last successful step.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_reset (gsl_odeiv2_driver * @var{d})
This function resets the evolution and stepper objects.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_reset_hstart (gsl_odeiv2_driver * @var{d}, const double @var{hstart})
The routine resets the evolution and stepper objects and sets new
initial step size to @var{hstart}. This function can be used e.g. to
change the direction of integration.
@end deftypefun

@deftypefun {int} gsl_odeiv2_driver_free (gsl_odeiv2_driver * @var{d})
This function frees the driver object, and the related evolution,
stepper and control objects.
@end deftypefun

@node ODE Example programs
@section Examples
@cindex Van der Pol oscillator, example
The following program solves the second-order nonlinear Van der Pol
oscillator equation,
@tex
\beforedisplay
$$
u''(t) + \mu u'(t) (u(t)^2 - 1) + u(t) = 0
$$
\afterdisplay
@end tex
@ifinfo

@example
u''(t) + \mu u'(t) (u(t)^2 - 1) + u(t) = 0
@end example

@end ifinfo
@noindent
This can be converted into a first order system suitable for use with
the routines described in this chapter by introducing a separate
variable for the velocity, @math{v = u'(t)},
@tex
\beforedisplay
$$
\eqalign{
u' &= v\cr
v' &= -u + \mu v (1-u^2)
}
$$
\afterdisplay
@end tex
@ifinfo

@example
u' = v
v' = -u + \mu v (1-u^2)
@end example

@end ifinfo
@noindent
The program begins by defining functions for these derivatives and
their Jacobian. The main function uses driver level functions to solve
the problem. The program evolves the solution from @math{(u, v) = (1,
0)} at @math{t=0} to @math{t=100}.  The step-size @math{h} is
automatically adjusted by the controller to maintain an absolute
accuracy of @c{$10^{-6}$} 
@math{10^@{-6@}} in the function values @math{(u, v)}.  
The loop in the example prints the solution at the points
@math{t_i = 1, 2, \dots, 100}.

@example
@verbatiminclude examples/ode-initval.c
@end example

@noindent
The user can work with the lower level functions directly, as in
the following example. In this case an intermediate result is printed
after each successful step instead of equidistant time points. 

@example
@verbatiminclude examples/ode-initval-low-level.c
@end example

@noindent
For functions with multiple parameters, the appropriate information
can be passed in through the @var{params} argument in
@code{gsl_odeiv2_system} definition (@var{mu} in this example) by using
a pointer to a struct.

@iftex
@sp 1
@center @image{vdp,3.4in}
@center Numerical solution of the Van der Pol oscillator equation 
@center using Prince-Dormand 8th order Runge-Kutta.
@end iftex

@noindent
It is also possible to work with a non-adaptive integrator, using only
the stepping function itself,
@code{gsl_odeiv2_driver_apply_fixed_step} or
@code{gsl_odeiv2_evolve_apply_fixed_step}. The following program uses
the driver level function, with fourth-order
Runge-Kutta stepping function with a fixed stepsize of
0.001.

@example
@verbatiminclude examples/odefixed.c
@end example

@node ODE References and Further Reading
@section References and Further Reading

@itemize @w{}
@item
Ascher, U.M., Petzold, L.R., @cite{Computer Methods for Ordinary
Differential and Differential-Algebraic Equations}, SIAM, 
Philadelphia, 1998.
@end itemize

@itemize @w{}
@item
Hairer, E., Norsett, S. P., Wanner, G., @cite{Solving Ordinary Differential 
Equations I: Nonstiff Problems}, Springer, Berlin, 1993.
@end itemize

@itemize @w{}
@item
Hairer, E., Wanner, G., @cite{Solving Ordinary Differential 
Equations II: Stiff and Differential-Algebraic Problems},
Springer, Berlin, 1996.
@end itemize

Many of the basic Runge-Kutta formulas can be found in the Handbook of
Mathematical Functions,

@itemize @w{}
@item
Abramowitz & Stegun (eds.), @cite{Handbook of Mathematical Functions},
Section 25.5.
@end itemize

@noindent
The implicit Bulirsch-Stoer algorithm @code{bsimp} is described in the
following paper,

@itemize @w{}
@item
G. Bader and P. Deuflhard, ``A Semi-Implicit Mid-Point Rule for Stiff
Systems of Ordinary Differential Equations.'', Numer.@: Math.@: 41, 373--398,
1983.
@end itemize

@noindent
The Adams and BDF multistep methods @code{msadams} and @code{msbdf}
are based on the following articles,

@itemize @w{}
@item
G. D. Byrne and A. C. Hindmarsh, ``A Polyalgorithm for the
Numerical Solution of Ordinary Differential Equations.'',
ACM Trans. Math. Software, 1, 71--96, 1975.

@item
P. N. Brown, G. D. Byrne and A. C. Hindmarsh, ``VODE: A
Variable-coefficient ODE Solver.'', SIAM J. Sci. Stat. Comput. 10,
1038--1051, 1989.

@item
A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker and C. S. Woodward, ``SUNDIALS: Suite of
Nonlinear and Differential/Algebraic Equation Solvers.'', ACM
Trans. Math. Software 31, 363--396, 2005.
@end itemize