1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
|
@cindex random number distributions
@cindex cumulative distribution functions (CDFs)
@cindex CDFs, cumulative distribution functions
@cindex inverse cumulative distribution functions
@cindex quantile functions
This chapter describes functions for generating random variates and
computing their probability distributions. Samples from the
distributions described in this chapter can be obtained using any of the
random number generators in the library as an underlying source of
randomness.
In the simplest cases a non-uniform distribution can be obtained
analytically from the uniform distribution of a random number generator
by applying an appropriate transformation. This method uses one call to
the random number generator. More complicated distributions are created
by the @dfn{acceptance-rejection} method, which compares the desired
distribution against a distribution which is similar and known
analytically. This usually requires several samples from the generator.
The library also provides cumulative distribution functions and inverse
cumulative distribution functions, sometimes referred to as quantile
functions. The cumulative distribution functions and their inverses are
computed separately for the upper and lower tails of the distribution,
allowing full accuracy to be retained for small results.
The functions for random variates and probability density functions
described in this section are declared in @file{gsl_randist.h}. The
corresponding cumulative distribution functions are declared in
@file{gsl_cdf.h}.
Note that the discrete random variate functions always
return a value of type @code{unsigned int}, and on most platforms this
has a maximum value of @c{$2^{32}-1 \approx 4.29\times10^9$}
@math{2^32-1 ~=~ 4.29e9}. They should only be called with
a safe range of parameters (where there is a negligible probability of
a variate exceeding this limit) to prevent incorrect results due to
overflow.
@menu
* Random Number Distribution Introduction::
* The Gaussian Distribution::
* The Gaussian Tail Distribution::
* The Bivariate Gaussian Distribution::
* The Multivariate Gaussian Distribution::
* The Exponential Distribution::
* The Laplace Distribution::
* The Exponential Power Distribution::
* The Cauchy Distribution::
* The Rayleigh Distribution::
* The Rayleigh Tail Distribution::
* The Landau Distribution::
* The Levy alpha-Stable Distributions::
* The Levy skew alpha-Stable Distribution::
* The Gamma Distribution::
* The Flat (Uniform) Distribution::
* The Lognormal Distribution::
* The Chi-squared Distribution::
* The F-distribution::
* The t-distribution::
* The Beta Distribution::
* The Logistic Distribution::
* The Pareto Distribution::
* Spherical Vector Distributions::
* The Weibull Distribution::
* The Type-1 Gumbel Distribution::
* The Type-2 Gumbel Distribution::
* The Dirichlet Distribution::
* General Discrete Distributions::
* The Poisson Distribution::
* The Bernoulli Distribution::
* The Binomial Distribution::
* The Multinomial Distribution::
* The Negative Binomial Distribution::
* The Pascal Distribution::
* The Geometric Distribution::
* The Hypergeometric Distribution::
* The Logarithmic Distribution::
* Shuffling and Sampling::
* Random Number Distribution Examples::
* Random Number Distribution References and Further Reading::
@end menu
@node Random Number Distribution Introduction
@section Introduction
Continuous random number distributions are defined by a probability
density function, @math{p(x)}, such that the probability of @math{x}
occurring in the infinitesimal range @math{x} to @math{x+dx} is @c{$p\,dx$}
@math{p dx}.
The cumulative distribution function for the lower tail @math{P(x)} is
defined by the integral,
@tex
\beforedisplay
$$
P(x) = \int_{-\infty}^{x} dx' p(x')
$$
\afterdisplay
@end tex
@ifinfo
@example
P(x) = \int_@{-\infty@}^@{x@} dx' p(x')
@end example
@end ifinfo
@noindent
and gives the probability of a variate taking a value less than @math{x}.
The cumulative distribution function for the upper tail @math{Q(x)} is
defined by the integral,
@tex
\beforedisplay
$$
Q(x) = \int_{x}^{+\infty} dx' p(x')
$$
\afterdisplay
@end tex
@ifinfo
@example
Q(x) = \int_@{x@}^@{+\infty@} dx' p(x')
@end example
@end ifinfo
@noindent
and gives the probability of a variate taking a value greater than @math{x}.
The upper and lower cumulative distribution functions are related by
@math{P(x) + Q(x) = 1} and satisfy @c{$0 \le P(x) \le 1$}
@math{0 <= P(x) <= 1}, @c{$0 \le Q(x) \le 1$}
@math{0 <= Q(x) <= 1}.
The inverse cumulative distributions, @c{$x=P^{-1}(P)$}
@math{x=P^@{-1@}(P)} and @c{$x=Q^{-1}(Q)$}
@math{x=Q^@{-1@}(Q)} give the values of @math{x}
which correspond to a specific value of @math{P} or @math{Q}.
They can be used to find confidence limits from probability values.
For discrete distributions the probability of sampling the integer
value @math{k} is given by @math{p(k)}, where @math{\sum_k p(k) = 1}.
The cumulative distribution for the lower tail @math{P(k)} of a
discrete distribution is defined as,
@tex
\beforedisplay
$$
P(k) = \sum_{i \le k} p(i)
$$
\afterdisplay
@end tex
@ifinfo
@example
P(k) = \sum_@{i <= k@} p(i)
@end example
@end ifinfo
@noindent
where the sum is over the allowed range of the distribution less than
or equal to @math{k}.
The cumulative distribution for the upper tail of a discrete
distribution @math{Q(k)} is defined as
@tex
\beforedisplay
$$
Q(k) = \sum_{i > k} p(i)
$$
\afterdisplay
@end tex
@ifinfo
@example
Q(k) = \sum_@{i > k@} p(i)
@end example
@end ifinfo
@noindent
giving the sum of probabilities for all values greater than @math{k}.
These two definitions satisfy the identity @math{P(k)+Q(k)=1}.
If the range of the distribution is 1 to @math{n} inclusive then
@math{P(n)=1}, @math{Q(n)=0} while @math{P(1) = p(1)},
@math{Q(1)=1-p(1)}.
@page
@node The Gaussian Distribution
@section The Gaussian Distribution
@deftypefun double gsl_ran_gaussian (const gsl_rng * @var{r}, double @var{sigma})
@cindex Gaussian distribution
This function returns a Gaussian random variate, with mean zero and
standard deviation @var{sigma}. The probability distribution for
Gaussian random variates is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over \sqrt{2 \pi \sigma^2}} \exp (-x^2 / 2\sigma^2) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over \sqrt@{2 \pi \sigma^2@}@} \exp (-x^2 / 2\sigma^2) dx
@end example
@end ifinfo
@noindent
for @math{x} in the range @math{-\infty} to @math{+\infty}. Use the
transformation @math{z = \mu + x} on the numbers returned by
@code{gsl_ran_gaussian} to obtain a Gaussian distribution with mean
@math{\mu}. This function uses the Box-Muller algorithm which requires two
calls to the random number generator @var{r}.
@end deftypefun
@deftypefun double gsl_ran_gaussian_pdf (double @var{x}, double @var{sigma})
This function computes the probability density @math{p(x)} at @var{x}
for a Gaussian distribution with standard deviation @var{sigma}, using
the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-gaussian.tex}
@end tex
@deftypefun double gsl_ran_gaussian_ziggurat (const gsl_rng * @var{r}, double @var{sigma})
@deftypefunx double gsl_ran_gaussian_ratio_method (const gsl_rng * @var{r}, double @var{sigma})
@cindex Ziggurat method
This function computes a Gaussian random variate using the alternative
Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods. The
Ziggurat algorithm is the fastest available algorithm in most cases.
@end deftypefun
@deftypefun double gsl_ran_ugaussian (const gsl_rng * @var{r})
@deftypefunx double gsl_ran_ugaussian_pdf (double @var{x})
@deftypefunx double gsl_ran_ugaussian_ratio_method (const gsl_rng * @var{r})
These functions compute results for the unit Gaussian distribution. They
are equivalent to the functions above with a standard deviation of one,
@var{sigma} = 1.
@end deftypefun
@deftypefun double gsl_cdf_gaussian_P (double @var{x}, double @var{sigma})
@deftypefunx double gsl_cdf_gaussian_Q (double @var{x}, double @var{sigma})
@deftypefunx double gsl_cdf_gaussian_Pinv (double @var{P}, double @var{sigma})
@deftypefunx double gsl_cdf_gaussian_Qinv (double @var{Q}, double @var{sigma})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Gaussian
distribution with standard deviation @var{sigma}.
@end deftypefun
@deftypefun double gsl_cdf_ugaussian_P (double @var{x})
@deftypefunx double gsl_cdf_ugaussian_Q (double @var{x})
@deftypefunx double gsl_cdf_ugaussian_Pinv (double @var{P})
@deftypefunx double gsl_cdf_ugaussian_Qinv (double @var{Q})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the unit Gaussian
distribution.
@end deftypefun
@page
@node The Gaussian Tail Distribution
@section The Gaussian Tail Distribution
@deftypefun double gsl_ran_gaussian_tail (const gsl_rng * @var{r}, double @var{a}, double @var{sigma})
@cindex Gaussian Tail distribution
This function provides random variates from the upper tail of a Gaussian
distribution with standard deviation @var{sigma}. The values returned
are larger than the lower limit @var{a}, which must be positive. The
method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann.
Math. Stat. 32, 894--899 (1961)), with this aspect explained in Knuth, v2,
3rd ed, p139,586 (exercise 11).
The probability distribution for Gaussian tail random variates is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over N(a;\sigma) \sqrt{2 \pi \sigma^2}} \exp (- x^2 / 2\sigma^2) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over N(a;\sigma) \sqrt@{2 \pi \sigma^2@}@} \exp (- x^2/(2 \sigma^2)) dx
@end example
@end ifinfo
@noindent
for @math{x > a} where @math{N(a;\sigma)} is the normalization constant,
@tex
\beforedisplay
$$
N(a;\sigma) = {1 \over 2} \hbox{erfc}\left({a \over \sqrt{2 \sigma^2}}\right).
$$
\afterdisplay
@end tex
@ifinfo
@example
N(a;\sigma) = (1/2) erfc(a / sqrt(2 sigma^2)).
@end example
@end ifinfo
@end deftypefun
@deftypefun double gsl_ran_gaussian_tail_pdf (double @var{x}, double @var{a}, double @var{sigma})
This function computes the probability density @math{p(x)} at @var{x}
for a Gaussian tail distribution with standard deviation @var{sigma} and
lower limit @var{a}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-gaussian-tail.tex}
@end tex
@deftypefun double gsl_ran_ugaussian_tail (const gsl_rng * @var{r}, double @var{a})
@deftypefunx double gsl_ran_ugaussian_tail_pdf (double @var{x}, double @var{a})
These functions compute results for the tail of a unit Gaussian
distribution. They are equivalent to the functions above with a standard
deviation of one, @var{sigma} = 1.
@end deftypefun
@page
@node The Bivariate Gaussian Distribution
@section The Bivariate Gaussian Distribution
@deftypefun void gsl_ran_bivariate_gaussian (const gsl_rng * @var{r}, double @var{sigma_x}, double @var{sigma_y}, double @var{rho}, double * @var{x}, double * @var{y})
@cindex Bivariate Gaussian distribution
@cindex two dimensional Gaussian distribution
@cindex Gaussian distribution, bivariate
This function generates a pair of correlated Gaussian variates, with
mean zero, correlation coefficient @var{rho} and standard deviations
@var{sigma_x} and @var{sigma_y} in the @math{x} and @math{y} directions.
The probability distribution for bivariate Gaussian random variates is,
@tex
\beforedisplay
$$
p(x,y) dx dy = {1 \over 2 \pi \sigma_x \sigma_y \sqrt{1-\rho^2}} \exp \left(-{(x^2/\sigma_x^2 + y^2/\sigma_y^2 - 2 \rho x y/(\sigma_x\sigma_y)) \over 2(1-\rho^2)}\right) dx dy
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x,y) dx dy = @{1 \over 2 \pi \sigma_x \sigma_y \sqrt@{1-\rho^2@}@} \exp (-(x^2/\sigma_x^2 + y^2/\sigma_y^2 - 2 \rho x y/(\sigma_x\sigma_y))/2(1-\rho^2)) dx dy
@end example
@end ifinfo
@noindent
for @math{x,y} in the range @math{-\infty} to @math{+\infty}. The
correlation coefficient @var{rho} should lie between @math{1} and
@math{-1}.
@end deftypefun
@deftypefun double gsl_ran_bivariate_gaussian_pdf (double @var{x}, double @var{y}, double @var{sigma_x}, double @var{sigma_y}, double @var{rho})
This function computes the probability density @math{p(x,y)} at
(@var{x},@var{y}) for a bivariate Gaussian distribution with standard
deviations @var{sigma_x}, @var{sigma_y} and correlation coefficient
@var{rho}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-bivariate-gaussian.tex}
@end tex
@page
@node The Multivariate Gaussian Distribution
@section The Multivariate Gaussian Distribution
@deftypefun int gsl_ran_multivariate_gaussian (const gsl_rng * @var{r}, const gsl_vector * @var{mu}, const gsl_matrix * @var{L}, gsl_vector * @var{result})
@cindex Bivariate Gaussian distribution
@cindex two dimensional Gaussian distribution
@cindex Gaussian distribution, bivariate
This function generates a random vector satisfying the @math{k}-dimensional multivariate Gaussian
distribution with mean @math{\mu} and variance-covariance matrix
@math{\Sigma}. On input, the @math{k}-vector @math{\mu} is given in @var{mu}, and
the Cholesky factor of the @math{k}-by-@math{k} matrix @math{\Sigma = L L^T} is
given in the lower triangle of @var{L}, as output from @code{gsl_linalg_cholesky_decomp}.
The random vector is stored in @var{result} on output. The probability distribution
for multivariate Gaussian random variates is
@tex
\beforedisplay
$$
p(x_1,\dots,x_k) dx_1 \dots dx_k = {1 \over \sqrt{(2 \pi)^k |\Sigma|}} \exp \left(-{1 \over 2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right) dx_1 \dots dx_k
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x_1,...,x_k) dx_1 ... dx_k = @{1 \over \sqrt@{(2 \pi)^k |\Sigma|@} \exp \left(-@{1 \over 2@} (x - \mu)^T \Sigma^@{-1@} (x - \mu)\right) dx_1 \dots dx_k
@end example
@end ifinfo
@end deftypefun
@deftypefun int gsl_ran_multivariate_gaussian_pdf (const gsl_vector * @var{x}, const gsl_vector * @var{mu}, const gsl_matrix * @var{L}, double * @var{result}, gsl_vector * @var{work})
@deftypefunx int gsl_ran_multivariate_gaussian_log_pdf (const gsl_vector * @var{x}, const gsl_vector * @var{mu}, const gsl_matrix * @var{L}, double * @var{result}, gsl_vector * @var{work})
These functions compute @math{p(x)} or @math{\log{p(x)}} at the point @var{x}, using mean vector
@var{mu} and variance-covariance matrix specified by its Cholesky factor @var{L} using the formula
above. Additional workspace of length @math{k} is required in @var{work}.
@end deftypefun
@deftypefun int gsl_ran_multivariate_gaussian_mean (const gsl_matrix * @var{X}, gsl_vector * @var{mu_hat})
Given a set of @math{n} samples @math{X_j} from a @math{k}-dimensional multivariate Gaussian distribution,
this function computes the maximum likelihood estimate of the mean of the distribution, given by
@tex
\beforedisplay
$$
\Hat{\mu} = {1 \over n} \sum_{j=1}^n X_j
$$
\afterdisplay
@end tex
@ifinfo
@example
\Hat@{\mu@} = @{1 \over n@} \sum_@{j=1@}^n X_j
@end example
@end ifinfo
The samples @math{X_1,X_2,\dots,X_n} are given in the @math{n}-by-@math{k} matrix @var{X}, and the maximum
likelihood estimate of the mean is stored in @var{mu_hat} on output.
@end deftypefun
@deftypefun int gsl_ran_multivariate_gaussian_vcov (const gsl_matrix * @var{X}, gsl_matrix * @var{sigma_hat})
Given a set of @math{n} samples @math{X_j} from a @math{k}-dimensional multivariate Gaussian distribution,
this function computes the maximum likelihood estimate of the variance-covariance matrix of the distribution,
given by
@tex
\beforedisplay
$$
\Hat{\Sigma} = {1 \over n} \sum_{j=1}^n \left( X_j - \Hat{\mu} \right) \left( X_j - \Hat{\mu} \right)^T
$$
\afterdisplay
@end tex
@ifinfo
@example
\Hat@{\Sigma@} = @{1 \over n@} \sum_@{j=1@}^n \left( X_j - \Hat@{\mu@} \right) \left( X_j - \Hat@{\mu@} \right)^T
@end example
@end ifinfo
The samples @math{X_1,X_2,\dots,X_n} are given in the @math{n}-by-@math{k} matrix @var{X} and the maximum
likelihood estimate of the variance-covariance matrix is stored in @var{sigma_hat} on output.
@end deftypefun
@page
@node The Exponential Distribution
@section The Exponential Distribution
@deftypefun double gsl_ran_exponential (const gsl_rng * @var{r}, double @var{mu})
@cindex Exponential distribution
This function returns a random variate from the exponential distribution
with mean @var{mu}. The distribution is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over \mu} \exp(-x/\mu) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over \mu@} \exp(-x/\mu) dx
@end example
@end ifinfo
@noindent
for @c{$x \ge 0$}
@math{x >= 0}.
@end deftypefun
@deftypefun double gsl_ran_exponential_pdf (double @var{x}, double @var{mu})
This function computes the probability density @math{p(x)} at @var{x}
for an exponential distribution with mean @var{mu}, using the formula
given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-exponential.tex}
@end tex
@deftypefun double gsl_cdf_exponential_P (double @var{x}, double @var{mu})
@deftypefunx double gsl_cdf_exponential_Q (double @var{x}, double @var{mu})
@deftypefunx double gsl_cdf_exponential_Pinv (double @var{P}, double @var{mu})
@deftypefunx double gsl_cdf_exponential_Qinv (double @var{Q}, double @var{mu})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the exponential
distribution with mean @var{mu}.
@end deftypefun
@page
@node The Laplace Distribution
@section The Laplace Distribution
@deftypefun double gsl_ran_laplace (const gsl_rng * @var{r}, double @var{a})
@cindex two-sided exponential distribution
@cindex Laplace distribution
This function returns a random variate from the Laplace distribution
with width @var{a}. The distribution is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over 2 a} \exp(-|x/a|) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over 2 a@} \exp(-|x/a|) dx
@end example
@end ifinfo
@noindent
for @math{-\infty < x < \infty}.
@end deftypefun
@deftypefun double gsl_ran_laplace_pdf (double @var{x}, double @var{a})
This function computes the probability density @math{p(x)} at @var{x}
for a Laplace distribution with width @var{a}, using the formula
given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-laplace.tex}
@end tex
@deftypefun double gsl_cdf_laplace_P (double @var{x}, double @var{a})
@deftypefunx double gsl_cdf_laplace_Q (double @var{x}, double @var{a})
@deftypefunx double gsl_cdf_laplace_Pinv (double @var{P}, double @var{a})
@deftypefunx double gsl_cdf_laplace_Qinv (double @var{Q}, double @var{a})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Laplace
distribution with width @var{a}.
@end deftypefun
@page
@node The Exponential Power Distribution
@section The Exponential Power Distribution
@deftypefun double gsl_ran_exppow (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Exponential power distribution
This function returns a random variate from the exponential power distribution
with scale parameter @var{a} and exponent @var{b}. The distribution is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over 2 a \Gamma(1+1/b)} \exp(-|x/a|^b) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over 2 a \Gamma(1+1/b)@} \exp(-|x/a|^b) dx
@end example
@end ifinfo
@noindent
for @c{$x \ge 0$}
@math{x >= 0}. For @math{b = 1} this reduces to the Laplace
distribution. For @math{b = 2} it has the same form as a Gaussian
distribution, but with @c{$a = \sqrt{2} \sigma$}
@math{a = \sqrt@{2@} \sigma}.
@end deftypefun
@deftypefun double gsl_ran_exppow_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for an exponential power distribution with scale parameter @var{a}
and exponent @var{b}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-exppow.tex}
@end tex
@deftypefun double gsl_cdf_exppow_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_exppow_Q (double @var{x}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} for the exponential power distribution with
parameters @var{a} and @var{b}.
@end deftypefun
@page
@node The Cauchy Distribution
@section The Cauchy Distribution
@deftypefun double gsl_ran_cauchy (const gsl_rng * @var{r}, double @var{a})
@cindex Cauchy distribution
This function returns a random variate from the Cauchy distribution with
scale parameter @var{a}. The probability distribution for Cauchy
random variates is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over a\pi (1 + (x/a)^2) } dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over a\pi (1 + (x/a)^2) @} dx
@end example
@end ifinfo
@noindent
for @math{x} in the range @math{-\infty} to @math{+\infty}. The Cauchy
distribution is also known as the Lorentz distribution.
@end deftypefun
@deftypefun double gsl_ran_cauchy_pdf (double @var{x}, double @var{a})
This function computes the probability density @math{p(x)} at @var{x}
for a Cauchy distribution with scale parameter @var{a}, using the formula
given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-cauchy.tex}
@end tex
@deftypefun double gsl_cdf_cauchy_P (double @var{x}, double @var{a})
@deftypefunx double gsl_cdf_cauchy_Q (double @var{x}, double @var{a})
@deftypefunx double gsl_cdf_cauchy_Pinv (double @var{P}, double @var{a})
@deftypefunx double gsl_cdf_cauchy_Qinv (double @var{Q}, double @var{a})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Cauchy
distribution with scale parameter @var{a}.
@end deftypefun
@page
@node The Rayleigh Distribution
@section The Rayleigh Distribution
@deftypefun double gsl_ran_rayleigh (const gsl_rng * @var{r}, double @var{sigma})
@cindex Rayleigh distribution
This function returns a random variate from the Rayleigh distribution with
scale parameter @var{sigma}. The distribution is,
@tex
\beforedisplay
$$
p(x) dx = {x \over \sigma^2} \exp(- x^2/(2 \sigma^2)) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{x \over \sigma^2@} \exp(- x^2/(2 \sigma^2)) dx
@end example
@end ifinfo
@noindent
for @math{x > 0}.
@end deftypefun
@deftypefun double gsl_ran_rayleigh_pdf (double @var{x}, double @var{sigma})
This function computes the probability density @math{p(x)} at @var{x}
for a Rayleigh distribution with scale parameter @var{sigma}, using the
formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-rayleigh.tex}
@end tex
@deftypefun double gsl_cdf_rayleigh_P (double @var{x}, double @var{sigma})
@deftypefunx double gsl_cdf_rayleigh_Q (double @var{x}, double @var{sigma})
@deftypefunx double gsl_cdf_rayleigh_Pinv (double @var{P}, double @var{sigma})
@deftypefunx double gsl_cdf_rayleigh_Qinv (double @var{Q}, double @var{sigma})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Rayleigh
distribution with scale parameter @var{sigma}.
@end deftypefun
@page
@node The Rayleigh Tail Distribution
@section The Rayleigh Tail Distribution
@deftypefun double gsl_ran_rayleigh_tail (const gsl_rng * @var{r}, double @var{a}, double @var{sigma})
@cindex Rayleigh Tail distribution
This function returns a random variate from the tail of the Rayleigh
distribution with scale parameter @var{sigma} and a lower limit of
@var{a}. The distribution is,
@tex
\beforedisplay
$$
p(x) dx = {x \over \sigma^2} \exp ((a^2 - x^2) /(2 \sigma^2)) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{x \over \sigma^2@} \exp ((a^2 - x^2) /(2 \sigma^2)) dx
@end example
@end ifinfo
@noindent
for @math{x > a}.
@end deftypefun
@deftypefun double gsl_ran_rayleigh_tail_pdf (double @var{x}, double @var{a}, double @var{sigma})
This function computes the probability density @math{p(x)} at @var{x}
for a Rayleigh tail distribution with scale parameter @var{sigma} and
lower limit @var{a}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-rayleigh-tail.tex}
@end tex
@page
@node The Landau Distribution
@section The Landau Distribution
@deftypefun double gsl_ran_landau (const gsl_rng * @var{r})
@cindex Landau distribution
This function returns a random variate from the Landau distribution. The
probability distribution for Landau random variates is defined
analytically by the complex integral,
@tex
\beforedisplay
$$
p(x) =
{1 \over {2 \pi i}} \int_{c-i\infty}^{c+i\infty} ds\, \exp(s \log(s) + x s)
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) = (1/(2 \pi i)) \int_@{c-i\infty@}^@{c+i\infty@} ds exp(s log(s) + x s)
@end example
@end ifinfo
For numerical purposes it is more convenient to use the following
equivalent form of the integral,
@tex
\beforedisplay
$$
p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t).
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t).
@end example
@end ifinfo
@end deftypefun
@deftypefun double gsl_ran_landau_pdf (double @var{x})
This function computes the probability density @math{p(x)} at @var{x}
for the Landau distribution using an approximation to the formula given
above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-landau.tex}
@end tex
@page
@node The Levy alpha-Stable Distributions
@section The Levy alpha-Stable Distributions
@deftypefun double gsl_ran_levy (const gsl_rng * @var{r}, double @var{c}, double @var{alpha})
@cindex Levy distribution
This function returns a random variate from the Levy symmetric stable
distribution with scale @var{c} and exponent @var{alpha}. The symmetric
stable probability distribution is defined by a Fourier transform,
@tex
\beforedisplay
$$
p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^\alpha)
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) = @{1 \over 2 \pi@} \int_@{-\infty@}^@{+\infty@} dt \exp(-it x - |c t|^alpha)
@end example
@end ifinfo
@noindent
There is no explicit solution for the form of @math{p(x)} and the
library does not define a corresponding @code{pdf} function. For
@math{\alpha = 1} the distribution reduces to the Cauchy distribution. For
@math{\alpha = 2} it is a Gaussian distribution with @c{$\sigma = \sqrt{2} c$}
@math{\sigma = \sqrt@{2@} c}. For @math{\alpha < 1} the tails of the
distribution become extremely wide.
The algorithm only works for @c{$0 < \alpha \le 2$}
@math{0 < alpha <= 2}.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-levy.tex}
@end tex
@page
@node The Levy skew alpha-Stable Distribution
@section The Levy skew alpha-Stable Distribution
@deftypefun double gsl_ran_levy_skew (const gsl_rng * @var{r}, double @var{c}, double @var{alpha}, double @var{beta})
@cindex Levy distribution, skew
@cindex Skew Levy distribution
This function returns a random variate from the Levy skew stable
distribution with scale @var{c}, exponent @var{alpha} and skewness
parameter @var{beta}. The skewness parameter must lie in the range
@math{[-1,1]}. The Levy skew stable probability distribution is defined
by a Fourier transform,
@tex
\beforedisplay
$$
p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^\alpha (1-i \beta \sign(t) \tan(\pi\alpha/2)))
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) = @{1 \over 2 \pi@} \int_@{-\infty@}^@{+\infty@} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2)))
@end example
@end ifinfo
@noindent
When @math{\alpha = 1} the term @math{\tan(\pi \alpha/2)} is replaced by
@math{-(2/\pi)\log|t|}. There is no explicit solution for the form of
@math{p(x)} and the library does not define a corresponding @code{pdf}
function. For @math{\alpha = 2} the distribution reduces to a Gaussian
distribution with @c{$\sigma = \sqrt{2} c$}
@math{\sigma = \sqrt@{2@} c} and the skewness parameter has no effect.
For @math{\alpha < 1} the tails of the distribution become extremely
wide. The symmetric distribution corresponds to @math{\beta =
0}.
The algorithm only works for @c{$0 < \alpha \le 2$}
@math{0 < alpha <= 2}.
@end deftypefun
The Levy alpha-stable distributions have the property that if @math{N}
alpha-stable variates are drawn from the distribution @math{p(c, \alpha,
\beta)} then the sum @math{Y = X_1 + X_2 + \dots + X_N} will also be
distributed as an alpha-stable variate,
@c{$p(N^{1/\alpha} c, \alpha, \beta)$}
@math{p(N^(1/\alpha) c, \alpha, \beta)}.
@comment PDF not available because there is no analytic expression for it
@comment
@comment @deftypefun double gsl_ran_levy_pdf (double @var{x}, double @var{mu})
@comment This function computes the probability density @math{p(x)} at @var{x}
@comment for a symmetric Levy distribution with scale parameter @var{mu} and
@comment exponent @var{a}, using the formula given above.
@comment @end deftypefun
@sp 1
@tex
\centerline{\input rand-levyskew.tex}
@end tex
@page
@node The Gamma Distribution
@section The Gamma Distribution
@deftypefun double gsl_ran_gamma (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Gamma distribution
This function returns a random variate from the gamma
distribution. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over \Gamma(a) b^a} x^{a-1} e^{-x/b} dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over \Gamma(a) b^a@} x^@{a-1@} e^@{-x/b@} dx
@end example
@end ifinfo
@noindent
for @math{x > 0}.
@comment If @xmath{X} and @xmath{Y} are independent gamma-distributed random
@comment variables of order @xmath{a} and @xmath{b}, then @xmath{X+Y} has a gamma
@comment distribution of order @xmath{a+b}.
@cindex Erlang distribution
The gamma distribution with an integer parameter @var{a} is known as the Erlang distribution.
The variates are computed using the Marsaglia-Tsang fast gamma method.
This function for this method was previously called
@code{gsl_ran_gamma_mt} and can still be accessed using this name.
@end deftypefun
@deftypefun double gsl_ran_gamma_knuth (const gsl_rng * @var{r}, double @var{a}, double @var{b})
This function returns a gamma variate using the algorithms from Knuth (vol 2).
@end deftypefun
@deftypefun double gsl_ran_gamma_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a gamma distribution with parameters @var{a} and @var{b}, using the
formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-gamma.tex}
@end tex
@deftypefun double gsl_cdf_gamma_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gamma_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gamma_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gamma_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the gamma
distribution with parameters @var{a} and @var{b}.
@end deftypefun
@page
@node The Flat (Uniform) Distribution
@section The Flat (Uniform) Distribution
@deftypefun double gsl_ran_flat (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex flat distribution
@cindex uniform distribution
This function returns a random variate from the flat (uniform)
distribution from @var{a} to @var{b}. The distribution is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over (b-a)} dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over (b-a)@} dx
@end example
@end ifinfo
@noindent
if @c{$a \le x < b$}
@math{a <= x < b} and 0 otherwise.
@end deftypefun
@deftypefun double gsl_ran_flat_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a uniform distribution from @var{a} to @var{b}, using the formula
given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-flat.tex}
@end tex
@deftypefun double gsl_cdf_flat_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_flat_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_flat_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_flat_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for a uniform distribution
from @var{a} to @var{b}.
@end deftypefun
@page
@node The Lognormal Distribution
@section The Lognormal Distribution
@deftypefun double gsl_ran_lognormal (const gsl_rng * @var{r}, double @var{zeta}, double @var{sigma})
@cindex Lognormal distribution
This function returns a random variate from the lognormal
distribution. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over x \sqrt{2 \pi \sigma^2}} \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over x \sqrt@{2 \pi \sigma^2@} @} \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx
@end example
@end ifinfo
@noindent
for @math{x > 0}.
@end deftypefun
@deftypefun double gsl_ran_lognormal_pdf (double @var{x}, double @var{zeta}, double @var{sigma})
This function computes the probability density @math{p(x)} at @var{x}
for a lognormal distribution with parameters @var{zeta} and @var{sigma},
using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-lognormal.tex}
@end tex
@deftypefun double gsl_cdf_lognormal_P (double @var{x}, double @var{zeta}, double @var{sigma})
@deftypefunx double gsl_cdf_lognormal_Q (double @var{x}, double @var{zeta}, double @var{sigma})
@deftypefunx double gsl_cdf_lognormal_Pinv (double @var{P}, double @var{zeta}, double @var{sigma})
@deftypefunx double gsl_cdf_lognormal_Qinv (double @var{Q}, double @var{zeta}, double @var{sigma})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the lognormal
distribution with parameters @var{zeta} and @var{sigma}.
@end deftypefun
@page
@node The Chi-squared Distribution
@section The Chi-squared Distribution
The chi-squared distribution arises in statistics. If @math{Y_i} are
@math{n} independent Gaussian random variates with unit variance then the
sum-of-squares,
@tex
\beforedisplay
$$
X_i = \sum_i Y_i^2
$$
\afterdisplay
@end tex
@ifinfo
@example
X_i = \sum_i Y_i^2
@end example
@end ifinfo
@noindent
has a chi-squared distribution with @math{n} degrees of freedom.
@deftypefun double gsl_ran_chisq (const gsl_rng * @var{r}, double @var{nu})
@cindex Chi-squared distribution
This function returns a random variate from the chi-squared distribution
with @var{nu} degrees of freedom. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx = {1 \over 2 \Gamma(\nu/2) } (x/2)^{\nu/2 - 1} \exp(-x/2) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{1 \over 2 \Gamma(\nu/2) @} (x/2)^@{\nu/2 - 1@} \exp(-x/2) dx
@end example
@end ifinfo
@noindent
for @c{$x \ge 0$}
@math{x >= 0}.
@end deftypefun
@deftypefun double gsl_ran_chisq_pdf (double @var{x}, double @var{nu})
This function computes the probability density @math{p(x)} at @var{x}
for a chi-squared distribution with @var{nu} degrees of freedom, using
the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-chisq.tex}
@end tex
@deftypefun double gsl_cdf_chisq_P (double @var{x}, double @var{nu})
@deftypefunx double gsl_cdf_chisq_Q (double @var{x}, double @var{nu})
@deftypefunx double gsl_cdf_chisq_Pinv (double @var{P}, double @var{nu})
@deftypefunx double gsl_cdf_chisq_Qinv (double @var{Q}, double @var{nu})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the chi-squared
distribution with @var{nu} degrees of freedom.
@end deftypefun
@page
@node The F-distribution
@section The F-distribution
The F-distribution arises in statistics. If @math{Y_1} and @math{Y_2}
are chi-squared deviates with @math{\nu_1} and @math{\nu_2} degrees of
freedom then the ratio,
@tex
\beforedisplay
$$
X = { (Y_1 / \nu_1) \over (Y_2 / \nu_2) }
$$
\afterdisplay
@end tex
@ifinfo
@example
X = @{ (Y_1 / \nu_1) \over (Y_2 / \nu_2) @}
@end example
@end ifinfo
@noindent
has an F-distribution @math{F(x;\nu_1,\nu_2)}.
@deftypefun double gsl_ran_fdist (const gsl_rng * @var{r}, double @var{nu1}, double @var{nu2})
@cindex F-distribution
This function returns a random variate from the F-distribution with degrees of freedom @var{nu1} and @var{nu2}. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx =
{ \Gamma((\nu_1 + \nu_2)/2)
\over \Gamma(\nu_1/2) \Gamma(\nu_2/2) }
\nu_1^{\nu_1/2} \nu_2^{\nu_2/2}
x^{\nu_1/2 - 1} (\nu_2 + \nu_1 x)^{-\nu_1/2 -\nu_2/2}
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx =
@{ \Gamma((\nu_1 + \nu_2)/2)
\over \Gamma(\nu_1/2) \Gamma(\nu_2/2) @}
\nu_1^@{\nu_1/2@} \nu_2^@{\nu_2/2@}
x^@{\nu_1/2 - 1@} (\nu_2 + \nu_1 x)^@{-\nu_1/2 -\nu_2/2@}
@end example
@end ifinfo
@noindent
for @c{$x \ge 0$}
@math{x >= 0}.
@end deftypefun
@deftypefun double gsl_ran_fdist_pdf (double @var{x}, double @var{nu1}, double @var{nu2})
This function computes the probability density @math{p(x)} at @var{x}
for an F-distribution with @var{nu1} and @var{nu2} degrees of freedom,
using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-fdist.tex}
@end tex
@deftypefun double gsl_cdf_fdist_P (double @var{x}, double @var{nu1}, double @var{nu2})
@deftypefunx double gsl_cdf_fdist_Q (double @var{x}, double @var{nu1}, double @var{nu2})
@deftypefunx double gsl_cdf_fdist_Pinv (double @var{P}, double @var{nu1}, double @var{nu2})
@deftypefunx double gsl_cdf_fdist_Qinv (double @var{Q}, double @var{nu1}, double @var{nu2})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the F-distribution
with @var{nu1} and @var{nu2} degrees of freedom.
@end deftypefun
@page
@node The t-distribution
@section The t-distribution
The t-distribution arises in statistics. If @math{Y_1} has a normal
distribution and @math{Y_2} has a chi-squared distribution with
@math{\nu} degrees of freedom then the ratio,
@tex
\beforedisplay
$$
X = { Y_1 \over \sqrt{Y_2 / \nu} }
$$
\afterdisplay
@end tex
@ifinfo
@example
X = @{ Y_1 \over \sqrt@{Y_2 / \nu@} @}
@end example
@end ifinfo
@noindent
has a t-distribution @math{t(x;\nu)} with @math{\nu} degrees of freedom.
@deftypefun double gsl_ran_tdist (const gsl_rng * @var{r}, double @var{nu})
@cindex t-distribution
@cindex Student t-distribution
This function returns a random variate from the t-distribution. The
distribution function is,
@tex
\beforedisplay
$$
p(x) dx = {\Gamma((\nu + 1)/2) \over \sqrt{\pi \nu} \Gamma(\nu/2)}
(1 + x^2/\nu)^{-(\nu + 1)/2} dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{\Gamma((\nu + 1)/2) \over \sqrt@{\pi \nu@} \Gamma(\nu/2)@}
(1 + x^2/\nu)^@{-(\nu + 1)/2@} dx
@end example
@end ifinfo
@noindent
for @math{-\infty < x < +\infty}.
@end deftypefun
@deftypefun double gsl_ran_tdist_pdf (double @var{x}, double @var{nu})
This function computes the probability density @math{p(x)} at @var{x}
for a t-distribution with @var{nu} degrees of freedom, using the formula
given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-tdist.tex}
@end tex
@deftypefun double gsl_cdf_tdist_P (double @var{x}, double @var{nu})
@deftypefunx double gsl_cdf_tdist_Q (double @var{x}, double @var{nu})
@deftypefunx double gsl_cdf_tdist_Pinv (double @var{P}, double @var{nu})
@deftypefunx double gsl_cdf_tdist_Qinv (double @var{Q}, double @var{nu})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the t-distribution
with @var{nu} degrees of freedom.
@end deftypefun
@page
@node The Beta Distribution
@section The Beta Distribution
@deftypefun double gsl_ran_beta (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Beta distribution
This function returns a random variate from the beta
distribution. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx = {\Gamma(a+b) \over \Gamma(a) \Gamma(b)} x^{a-1} (1-x)^{b-1} dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{\Gamma(a+b) \over \Gamma(a) \Gamma(b)@} x^@{a-1@} (1-x)^@{b-1@} dx
@end example
@end ifinfo
@noindent
for @c{$0 \le x \le 1$}
@math{0 <= x <= 1}.
@end deftypefun
@deftypefun double gsl_ran_beta_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a beta distribution with parameters @var{a} and @var{b}, using the
formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-beta.tex}
@end tex
@deftypefun double gsl_cdf_beta_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_beta_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_beta_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_beta_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the beta
distribution with parameters @var{a} and @var{b}.
@end deftypefun
@page
@node The Logistic Distribution
@section The Logistic Distribution
@deftypefun double gsl_ran_logistic (const gsl_rng * @var{r}, double @var{a})
@cindex Logistic distribution
This function returns a random variate from the logistic
distribution. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx = { \exp(-x/a) \over a (1 + \exp(-x/a))^2 } dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{ \exp(-x/a) \over a (1 + \exp(-x/a))^2 @} dx
@end example
@end ifinfo
@noindent
for @math{-\infty < x < +\infty}.
@end deftypefun
@deftypefun double gsl_ran_logistic_pdf (double @var{x}, double @var{a})
This function computes the probability density @math{p(x)} at @var{x}
for a logistic distribution with scale parameter @var{a}, using the
formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-logistic.tex}
@end tex
@deftypefun double gsl_cdf_logistic_P (double @var{x}, double @var{a})
@deftypefunx double gsl_cdf_logistic_Q (double @var{x}, double @var{a})
@deftypefunx double gsl_cdf_logistic_Pinv (double @var{P}, double @var{a})
@deftypefunx double gsl_cdf_logistic_Qinv (double @var{Q}, double @var{a})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the logistic
distribution with scale parameter @var{a}.
@end deftypefun
@page
@node The Pareto Distribution
@section The Pareto Distribution
@deftypefun double gsl_ran_pareto (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Pareto distribution
This function returns a random variate from the Pareto distribution of
order @var{a}. The distribution function is,
@tex
\beforedisplay
$$
p(x) dx = (a/b) / (x/b)^{a+1} dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = (a/b) / (x/b)^@{a+1@} dx
@end example
@end ifinfo
@noindent
for @c{$x \ge b$}
@math{x >= b}.
@end deftypefun
@deftypefun double gsl_ran_pareto_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a Pareto distribution with exponent @var{a} and scale @var{b}, using
the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-pareto.tex}
@end tex
@deftypefun double gsl_cdf_pareto_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_pareto_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_pareto_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_pareto_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Pareto
distribution with exponent @var{a} and scale @var{b}.
@end deftypefun
@page
@node Spherical Vector Distributions
@section Spherical Vector Distributions
The spherical distributions generate random vectors, located on a
spherical surface. They can be used as random directions, for example in
the steps of a random walk.
@deftypefun void gsl_ran_dir_2d (const gsl_rng * @var{r}, double * @var{x}, double * @var{y})
@deftypefunx void gsl_ran_dir_2d_trig_method (const gsl_rng * @var{r}, double * @var{x}, double * @var{y})
@cindex 2D random direction vector
@cindex direction vector, random 2D
@cindex spherical random variates, 2D
This function returns a random direction vector @math{v} =
(@var{x},@var{y}) in two dimensions. The vector is normalized such that
@math{|v|^2 = x^2 + y^2 = 1}. The obvious way to do this is to take a
uniform random number between 0 and @math{2\pi} and let @var{x} and
@var{y} be the sine and cosine respectively. Two trig functions would
have been expensive in the old days, but with modern hardware
implementations, this is sometimes the fastest way to go. This is the
case for the Pentium (but not the case for the Sun Sparcstation).
One can avoid the trig evaluations by choosing @var{x} and
@var{y} in the interior of a unit circle (choose them at random from the
interior of the enclosing square, and then reject those that are outside
the unit circle), and then dividing by @c{$\sqrt{x^2 + y^2}$}
@math{\sqrt@{x^2 + y^2@}}.
A much cleverer approach, attributed to von Neumann (See Knuth, v2, 3rd
ed, p140, exercise 23), requires neither trig nor a square root. In
this approach, @var{u} and @var{v} are chosen at random from the
interior of a unit circle, and then @math{x=(u^2-v^2)/(u^2+v^2)} and
@math{y=2uv/(u^2+v^2)}.
@end deftypefun
@deftypefun void gsl_ran_dir_3d (const gsl_rng * @var{r}, double * @var{x}, double * @var{y}, double * @var{z})
@cindex 3D random direction vector
@cindex direction vector, random 3D
@cindex spherical random variates, 3D
This function returns a random direction vector @math{v} =
(@var{x},@var{y},@var{z}) in three dimensions. The vector is normalized
such that @math{|v|^2 = x^2 + y^2 + z^2 = 1}. The method employed is
due to Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2,
3rd ed, p136. It uses the surprising fact that the distribution
projected along any axis is actually uniform (this is only true for 3
dimensions).
@end deftypefun
@deftypefun void gsl_ran_dir_nd (const gsl_rng * @var{r}, size_t @var{n}, double * @var{x})
@cindex N-dimensional random direction vector
@cindex direction vector, random N-dimensional
@cindex spherical random variates, N-dimensional
This function returns a random direction vector
@c{$v = (x_1,x_2,\ldots,x_n)$}
@math{v = (x_1,x_2,...,x_n)} in @var{n} dimensions. The vector is normalized
such that
@c{$|v|^2 = x_1^2 + x_2^2 + \cdots + x_n^2 = 1$}
@math{|v|^2 = x_1^2 + x_2^2 + ... + x_n^2 = 1}. The method
uses the fact that a multivariate Gaussian distribution is spherically
symmetric. Each component is generated to have a Gaussian distribution,
and then the components are normalized. The method is described by
Knuth, v2, 3rd ed, p135--136, and attributed to G. W. Brown, Modern
Mathematics for the Engineer (1956).
@end deftypefun
@page
@node The Weibull Distribution
@section The Weibull Distribution
@deftypefun double gsl_ran_weibull (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Weibull distribution
This function returns a random variate from the Weibull distribution. The
distribution function is,
@tex
\beforedisplay
$$
p(x) dx = {b \over a^b} x^{b-1} \exp(-(x/a)^b) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = @{b \over a^b@} x^@{b-1@} \exp(-(x/a)^b) dx
@end example
@end ifinfo
@noindent
for @c{$x \ge 0$}
@math{x >= 0}.
@end deftypefun
@deftypefun double gsl_ran_weibull_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a Weibull distribution with scale @var{a} and exponent @var{b},
using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-weibull.tex}
@end tex
@deftypefun double gsl_cdf_weibull_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_weibull_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_weibull_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_weibull_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Weibull
distribution with scale @var{a} and exponent @var{b}.
@end deftypefun
@page
@node The Type-1 Gumbel Distribution
@section The Type-1 Gumbel Distribution
@deftypefun double gsl_ran_gumbel1 (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Gumbel distribution (Type 1)
@cindex Type 1 Gumbel distribution, random variates
This function returns a random variate from the Type-1 Gumbel
distribution. The Type-1 Gumbel distribution function is,
@tex
\beforedisplay
$$
p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx
@end example
@end ifinfo
@noindent
for @math{-\infty < x < \infty}.
@end deftypefun
@deftypefun double gsl_ran_gumbel1_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a Type-1 Gumbel distribution with parameters @var{a} and @var{b},
using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-gumbel1.tex}
@end tex
@deftypefun double gsl_cdf_gumbel1_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gumbel1_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gumbel1_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gumbel1_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Type-1 Gumbel
distribution with parameters @var{a} and @var{b}.
@end deftypefun
@page
@node The Type-2 Gumbel Distribution
@section The Type-2 Gumbel Distribution
@deftypefun double gsl_ran_gumbel2 (const gsl_rng * @var{r}, double @var{a}, double @var{b})
@cindex Gumbel distribution (Type 2)
@cindex Type 2 Gumbel distribution
This function returns a random variate from the Type-2 Gumbel
distribution. The Type-2 Gumbel distribution function is,
@tex
\beforedisplay
$$
p(x) dx = a b x^{-a-1} \exp(-b x^{-a}) dx
$$
\afterdisplay
@end tex
@ifinfo
@example
p(x) dx = a b x^@{-a-1@} \exp(-b x^@{-a@}) dx
@end example
@end ifinfo
@noindent
for @math{0 < x < \infty}.
@end deftypefun
@deftypefun double gsl_ran_gumbel2_pdf (double @var{x}, double @var{a}, double @var{b})
This function computes the probability density @math{p(x)} at @var{x}
for a Type-2 Gumbel distribution with parameters @var{a} and @var{b},
using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-gumbel2.tex}
@end tex
@deftypefun double gsl_cdf_gumbel2_P (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gumbel2_Q (double @var{x}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gumbel2_Pinv (double @var{P}, double @var{a}, double @var{b})
@deftypefunx double gsl_cdf_gumbel2_Qinv (double @var{Q}, double @var{a}, double @var{b})
These functions compute the cumulative distribution functions
@math{P(x)}, @math{Q(x)} and their inverses for the Type-2 Gumbel
distribution with parameters @var{a} and @var{b}.
@end deftypefun
@page
@node The Dirichlet Distribution
@section The Dirichlet Distribution
@deftypefun void gsl_ran_dirichlet (const gsl_rng * @var{r}, size_t @var{K}, const double @var{alpha}[], double @var{theta}[])
@cindex Dirichlet distribution
This function returns an array of @var{K} random variates from a Dirichlet
distribution of order @var{K}-1. The distribution function is
@tex
\beforedisplay
$$
p(\theta_1,\ldots,\theta_K) \, d\theta_1 \cdots d\theta_K =
{1 \over Z} \prod_{i=1}^{K} \theta_i^{\alpha_i - 1}
\; \delta(1 -\sum_{i=1}^K \theta_i) d\theta_1 \cdots d\theta_K
$$
\afterdisplay
@end tex
@ifinfo
@example
p(\theta_1, ..., \theta_K) d\theta_1 ... d\theta_K =
(1/Z) \prod_@{i=1@}^K \theta_i^@{\alpha_i - 1@} \delta(1 -\sum_@{i=1@}^K \theta_i) d\theta_1 ... d\theta_K
@end example
@end ifinfo
@noindent
for @c{$\theta_i \ge 0$}
@math{theta_i >= 0}
and @c{$\alpha_i > 0$}
@math{alpha_i > 0}. The delta function ensures that @math{\sum \theta_i = 1}.
The normalization factor @math{Z} is
@tex
\beforedisplay
$$
Z = {\prod_{i=1}^K \Gamma(\alpha_i) \over \Gamma( \sum_{i=1}^K \alpha_i)}
$$
\afterdisplay
@end tex
@ifinfo
@example
Z = @{\prod_@{i=1@}^K \Gamma(\alpha_i)@} / @{\Gamma( \sum_@{i=1@}^K \alpha_i)@}
@end example
@end ifinfo
The random variates are generated by sampling @var{K} values
from gamma distributions with parameters
@c{$a=\alpha_i$, $b=1$}
@math{a=alpha_i, b=1},
and renormalizing.
See A.M. Law, W.D. Kelton, @cite{Simulation Modeling and Analysis} (1991).
@end deftypefun
@deftypefun double gsl_ran_dirichlet_pdf (size_t @var{K}, const double @var{alpha}[], const double @var{theta}[])
This function computes the probability density
@c{$p(\theta_1, \ldots , \theta_K)$}
@math{p(\theta_1, ... , \theta_K)}
at @var{theta}[@var{K}] for a Dirichlet distribution with parameters
@var{alpha}[@var{K}], using the formula given above.
@end deftypefun
@deftypefun double gsl_ran_dirichlet_lnpdf (size_t @var{K}, const double @var{alpha}[], const double @var{theta}[])
This function computes the logarithm of the probability density
@c{$p(\theta_1, \ldots , \theta_K)$}
@math{p(\theta_1, ... , \theta_K)}
for a Dirichlet distribution with parameters
@var{alpha}[@var{K}].
@end deftypefun
@page
@node General Discrete Distributions
@section General Discrete Distributions
Given @math{K} discrete events with different probabilities @math{P[k]},
produce a random value @math{k} consistent with its probability.
The obvious way to do this is to preprocess the probability list by
generating a cumulative probability array with @math{K+1} elements:
@tex
\beforedisplay
$$
\eqalign{
C[0] & = 0 \cr
C[k+1] &= C[k]+P[k].
}
$$
\afterdisplay
@end tex
@ifinfo
@example
C[0] = 0
C[k+1] = C[k]+P[k].
@end example
@end ifinfo
@noindent
Note that this construction produces @math{C[K]=1}. Now choose a
uniform deviate @math{u} between 0 and 1, and find the value of @math{k}
such that @c{$C[k] \le u < C[k+1]$}
@math{C[k] <= u < C[k+1]}.
Although this in principle requires of order @math{\log K} steps per
random number generation, they are fast steps, and if you use something
like @math{\lfloor uK \rfloor} as a starting point, you can often do
pretty well.
But faster methods have been devised. Again, the idea is to preprocess
the probability list, and save the result in some form of lookup table;
then the individual calls for a random discrete event can go rapidly.
An approach invented by G. Marsaglia (Generating discrete random variables
in a computer, Comm ACM 6, 37--38 (1963)) is very clever, and readers
interested in examples of good algorithm design are directed to this
short and well-written paper. Unfortunately, for large @math{K},
Marsaglia's lookup table can be quite large.
A much better approach is due to Alastair J. Walker (An efficient method
for generating discrete random variables with general distributions, ACM
Trans on Mathematical Software 3, 253--256 (1977); see also Knuth, v2,
3rd ed, p120--121,139). This requires two lookup tables, one floating
point and one integer, but both only of size @math{K}. After
preprocessing, the random numbers are generated in O(1) time, even for
large @math{K}. The preprocessing suggested by Walker requires
@math{O(K^2)} effort, but that is not actually necessary, and the
implementation provided here only takes @math{O(K)} effort. In general,
more preprocessing leads to faster generation of the individual random
numbers, but a diminishing return is reached pretty early. Knuth points
out that the optimal preprocessing is combinatorially difficult for
large @math{K}.
This method can be used to speed up some of the discrete random number
generators below, such as the binomial distribution. To use it for
something like the Poisson Distribution, a modification would have to
be made, since it only takes a finite set of @math{K} outcomes.
@deftypefun {gsl_ran_discrete_t *} gsl_ran_discrete_preproc (size_t @var{K}, const double * @var{P})
@tindex gsl_ran_discrete_t
@cindex Discrete random numbers
@cindex Discrete random numbers, preprocessing
This function returns a pointer to a structure that contains the lookup
table for the discrete random number generator. The array @var{P}[] contains
the probabilities of the discrete events; these array elements must all be
positive, but they needn't add up to one (so you can think of them more
generally as ``weights'')---the preprocessor will normalize appropriately.
This return value is used
as an argument for the @code{gsl_ran_discrete} function below.
@end deftypefun
@deftypefun {size_t} gsl_ran_discrete (const gsl_rng * @var{r}, const gsl_ran_discrete_t * @var{g})
@cindex Discrete random numbers
After the preprocessor, above, has been called, you use this function to
get the discrete random numbers.
@end deftypefun
@deftypefun {double} gsl_ran_discrete_pdf (size_t @var{k}, const gsl_ran_discrete_t * @var{g})
@cindex Discrete random numbers
Returns the probability @math{P[k]} of observing the variable @var{k}.
Since @math{P[k]} is not stored as part of the lookup table, it must be
recomputed; this computation takes @math{O(K)}, so if @var{K} is large
and you care about the original array @math{P[k]} used to create the
lookup table, then you should just keep this original array @math{P[k]}
around.
@end deftypefun
@deftypefun {void} gsl_ran_discrete_free (gsl_ran_discrete_t * @var{g})
@cindex Discrete random numbers
De-allocates the lookup table pointed to by @var{g}.
@end deftypefun
@page
@node The Poisson Distribution
@section The Poisson Distribution
@deftypefun {unsigned int} gsl_ran_poisson (const gsl_rng * @var{r}, double @var{mu})
@cindex Poisson random numbers
This function returns a random integer from the Poisson distribution
with mean @var{mu}. The probability distribution for Poisson variates is,
@tex
\beforedisplay
$$
p(k) = {\mu^k \over k!} \exp(-\mu)
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = @{\mu^k \over k!@} \exp(-\mu)
@end example
@end ifinfo
@noindent
for @c{$k \ge 0$}
@math{k >= 0}.
@end deftypefun
@deftypefun double gsl_ran_poisson_pdf (unsigned int @var{k}, double @var{mu})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a Poisson distribution with mean @var{mu}, using the formula
given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-poisson.tex}
@end tex
@deftypefun double gsl_cdf_poisson_P (unsigned int @var{k}, double @var{mu})
@deftypefunx double gsl_cdf_poisson_Q (unsigned int @var{k}, double @var{mu})
These functions compute the cumulative distribution functions
@math{P(k)}, @math{Q(k)} for the Poisson distribution with parameter
@var{mu}.
@end deftypefun
@page
@node The Bernoulli Distribution
@section The Bernoulli Distribution
@deftypefun {unsigned int} gsl_ran_bernoulli (const gsl_rng * @var{r}, double @var{p})
@cindex Bernoulli trial, random variates
This function returns either 0 or 1, the result of a Bernoulli trial
with probability @var{p}. The probability distribution for a Bernoulli
trial is,
@tex
\beforedisplay
$$
\eqalign{
p(0) & = 1 - p \cr
p(1) & = p
}
$$
\afterdisplay
@end tex
@ifinfo
@example
p(0) = 1 - p
p(1) = p
@end example
@end ifinfo
@end deftypefun
@deftypefun double gsl_ran_bernoulli_pdf (unsigned int @var{k}, double @var{p})
This function computes the probability @math{p(k)} of obtaining
@var{k} from a Bernoulli distribution with probability parameter
@var{p}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-bernoulli.tex}
@end tex
@page
@node The Binomial Distribution
@section The Binomial Distribution
@deftypefun {unsigned int} gsl_ran_binomial (const gsl_rng * @var{r}, double @var{p}, unsigned int @var{n})
@cindex Binomial random variates
This function returns a random integer from the binomial distribution,
the number of successes in @var{n} independent trials with probability
@var{p}. The probability distribution for binomial variates is,
@tex
\beforedisplay
$$
p(k) = {n! \over k! (n-k)!} p^k (1-p)^{n-k}
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = @{n! \over k! (n-k)! @} p^k (1-p)^@{n-k@}
@end example
@end ifinfo
@noindent
for @c{$0 \le k \le n$}
@math{0 <= k <= n}.
@end deftypefun
@deftypefun double gsl_ran_binomial_pdf (unsigned int @var{k}, double @var{p}, unsigned int @var{n})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a binomial distribution with parameters @var{p} and @var{n}, using
the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-binomial.tex}
@end tex
@deftypefun double gsl_cdf_binomial_P (unsigned int @var{k}, double @var{p}, unsigned int @var{n})
@deftypefunx double gsl_cdf_binomial_Q (unsigned int @var{k}, double @var{p}, unsigned int @var{n})
These functions compute the cumulative distribution functions
@math{P(k)}, @math{Q(k)} for the binomial
distribution with parameters @var{p} and @var{n}.
@end deftypefun
@page
@node The Multinomial Distribution
@section The Multinomial Distribution
@deftypefun void gsl_ran_multinomial (const gsl_rng * @var{r}, size_t @var{K}, unsigned int @var{N}, const double @var{p}[], unsigned int @var{n}[])
@cindex Multinomial distribution
This function computes a random sample @var{n}[] from the multinomial
distribution formed by @var{N} trials from an underlying distribution
@var{p}[@var{K}]. The distribution function for @var{n}[] is,
@tex
\beforedisplay
$$
P(n_1, n_2,\cdots, n_K) = {{ N!}\over{n_1 ! n_2 ! \cdots n_K !}} \,
p_1^{n_1} p_2^{n_2} \cdots p_K^{n_K}
$$
\afterdisplay
@end tex
@ifinfo
@example
P(n_1, n_2, ..., n_K) =
(N!/(n_1! n_2! ... n_K!)) p_1^n_1 p_2^n_2 ... p_K^n_K
@end example
@end ifinfo
@noindent
where @c{($n_1$, $n_2$, $\ldots$, $n_K$)}
@math{(n_1, n_2, ..., n_K)}
are nonnegative integers with
@c{$\sum_{k=1}^{K} n_k =N$}
@math{sum_@{k=1@}^K n_k = N},
and
@c{$(p_1, p_2, \ldots, p_K)$}
@math{(p_1, p_2, ..., p_K)}
is a probability distribution with @math{\sum p_i = 1}.
If the array @var{p}[@var{K}] is not normalized then its entries will be
treated as weights and normalized appropriately. The arrays @var{n}[]
and @var{p}[] must both be of length @var{K}.
Random variates are generated using the conditional binomial method (see
C.S. Davis, @cite{The computer generation of multinomial random
variates}, Comp. Stat. Data Anal. 16 (1993) 205--217 for details).
@end deftypefun
@deftypefun double gsl_ran_multinomial_pdf (size_t @var{K}, const double @var{p}[], const unsigned int @var{n}[])
This function computes the probability
@c{$P(n_1, n_2, \ldots, n_K)$}
@math{P(n_1, n_2, ..., n_K)}
of sampling @var{n}[@var{K}] from a multinomial distribution
with parameters @var{p}[@var{K}], using the formula given above.
@end deftypefun
@deftypefun double gsl_ran_multinomial_lnpdf (size_t @var{K}, const double @var{p}[], const unsigned int @var{n}[])
This function returns the logarithm of the probability for the
multinomial distribution @c{$P(n_1, n_2, \ldots, n_K)$}
@math{P(n_1, n_2, ..., n_K)} with parameters @var{p}[@var{K}].
@end deftypefun
@page
@node The Negative Binomial Distribution
@section The Negative Binomial Distribution
@deftypefun {unsigned int} gsl_ran_negative_binomial (const gsl_rng * @var{r}, double @var{p}, double @var{n})
@cindex Negative Binomial distribution, random variates
This function returns a random integer from the negative binomial
distribution, the number of failures occurring before @var{n} successes
in independent trials with probability @var{p} of success. The
probability distribution for negative binomial variates is,
@tex
\beforedisplay
$$
p(k) = {\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } p^n (1-p)^k
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = @{\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) @} p^n (1-p)^k
@end example
@end ifinfo
@noindent
Note that @math{n} is not required to be an integer.
@end deftypefun
@deftypefun double gsl_ran_negative_binomial_pdf (unsigned int @var{k}, double @var{p}, double @var{n})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a negative binomial distribution with parameters @var{p} and
@var{n}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-nbinomial.tex}
@end tex
@deftypefun double gsl_cdf_negative_binomial_P (unsigned int @var{k}, double @var{p}, double @var{n})
@deftypefunx double gsl_cdf_negative_binomial_Q (unsigned int @var{k}, double @var{p}, double @var{n})
These functions compute the cumulative distribution functions
@math{P(k)}, @math{Q(k)} for the negative binomial distribution with
parameters @var{p} and @var{n}.
@end deftypefun
@page
@node The Pascal Distribution
@section The Pascal Distribution
@deftypefun {unsigned int} gsl_ran_pascal (const gsl_rng * @var{r}, double @var{p}, unsigned int @var{n})
This function returns a random integer from the Pascal distribution. The
Pascal distribution is simply a negative binomial distribution with an
integer value of @math{n}.
@tex
\beforedisplay
$$
p(k) = {(n + k - 1)! \over k! (n - 1)! } p^n (1-p)^k
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = @{(n + k - 1)! \over k! (n - 1)! @} p^n (1-p)^k
@end example
@end ifinfo
@noindent
for @c{$k \ge 0$}
@math{k >= 0}
@end deftypefun
@deftypefun double gsl_ran_pascal_pdf (unsigned int @var{k}, double @var{p}, unsigned int @var{n})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a Pascal distribution with parameters @var{p} and
@var{n}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-pascal.tex}
@end tex
@deftypefun double gsl_cdf_pascal_P (unsigned int @var{k}, double @var{p}, unsigned int @var{n})
@deftypefunx double gsl_cdf_pascal_Q (unsigned int @var{k}, double @var{p}, unsigned int @var{n})
These functions compute the cumulative distribution functions
@math{P(k)}, @math{Q(k)} for the Pascal distribution with
parameters @var{p} and @var{n}.
@end deftypefun
@page
@node The Geometric Distribution
@section The Geometric Distribution
@deftypefun {unsigned int} gsl_ran_geometric (const gsl_rng * @var{r}, double @var{p})
@cindex Geometric random variates
This function returns a random integer from the geometric distribution,
the number of independent trials with probability @var{p} until the
first success. The probability distribution for geometric variates
is,
@tex
\beforedisplay
$$
p(k) = p (1-p)^{k-1}
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = p (1-p)^(k-1)
@end example
@end ifinfo
@noindent
for @c{$k \ge 1$}
@math{k >= 1}. Note that the distribution begins with @math{k=1} with this
definition. There is another convention in which the exponent @math{k-1}
is replaced by @math{k}.
@end deftypefun
@deftypefun double gsl_ran_geometric_pdf (unsigned int @var{k}, double @var{p})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a geometric distribution with probability parameter @var{p}, using
the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-geometric.tex}
@end tex
@deftypefun double gsl_cdf_geometric_P (unsigned int @var{k}, double @var{p})
@deftypefunx double gsl_cdf_geometric_Q (unsigned int @var{k}, double @var{p})
These functions compute the cumulative distribution functions
@math{P(k)}, @math{Q(k)} for the geometric distribution with parameter
@var{p}.
@end deftypefun
@page
@node The Hypergeometric Distribution
@section The Hypergeometric Distribution
@cindex hypergeometric random variates
@deftypefun {unsigned int} gsl_ran_hypergeometric (const gsl_rng * @var{r}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t})
@cindex Geometric random variates
This function returns a random integer from the hypergeometric
distribution. The probability distribution for hypergeometric
random variates is,
@tex
\beforedisplay
$$
p(k) = C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t)
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t)
@end example
@end ifinfo
@noindent
where @math{C(a,b) = a!/(b!(a-b)!)} and
@c{$t \leq n_1 + n_2$}
@math{t <= n_1 + n_2}. The domain of @math{k} is
@c{$\hbox{max}(0,t-n_2), \ldots, \hbox{min}(t,n_1)$}
@math{max(0,t-n_2), ..., min(t,n_1)}.
If a population contains @math{n_1} elements of ``type 1'' and
@math{n_2} elements of ``type 2'' then the hypergeometric
distribution gives the probability of obtaining @math{k} elements of
``type 1'' in @math{t} samples from the population without
replacement.
@end deftypefun
@deftypefun double gsl_ran_hypergeometric_pdf (unsigned int @var{k}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a hypergeometric distribution with parameters @var{n1}, @var{n2},
@var{t}, using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-hypergeometric.tex}
@end tex
@deftypefun double gsl_cdf_hypergeometric_P (unsigned int @var{k}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t})
@deftypefunx double gsl_cdf_hypergeometric_Q (unsigned int @var{k}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t})
These functions compute the cumulative distribution functions
@math{P(k)}, @math{Q(k)} for the hypergeometric distribution with
parameters @var{n1}, @var{n2} and @var{t}.
@end deftypefun
@page
@node The Logarithmic Distribution
@section The Logarithmic Distribution
@deftypefun {unsigned int} gsl_ran_logarithmic (const gsl_rng * @var{r}, double @var{p})
@cindex Logarithmic random variates
This function returns a random integer from the logarithmic
distribution. The probability distribution for logarithmic random variates
is,
@tex
\beforedisplay
$$
p(k) = {-1 \over \log(1-p)} {\left( p^k \over k \right)}
$$
\afterdisplay
@end tex
@ifinfo
@example
p(k) = @{-1 \over \log(1-p)@} @{(p^k \over k)@}
@end example
@end ifinfo
@noindent
for @c{$k \ge 1$}
@math{k >= 1}.
@end deftypefun
@deftypefun double gsl_ran_logarithmic_pdf (unsigned int @var{k}, double @var{p})
This function computes the probability @math{p(k)} of obtaining @var{k}
from a logarithmic distribution with probability parameter @var{p},
using the formula given above.
@end deftypefun
@sp 1
@tex
\centerline{\input rand-logarithmic.tex}
@end tex
@page
@node Shuffling and Sampling
@section Shuffling and Sampling
The following functions allow the shuffling and sampling of a set of
objects. The algorithms rely on a random number generator as a source of
randomness and a poor quality generator can lead to correlations in the
output. In particular it is important to avoid generators with a short
period. For more information see Knuth, v2, 3rd ed, Section 3.4.2,
``Random Sampling and Shuffling''.
@deftypefun void gsl_ran_shuffle (const gsl_rng * @var{r}, void * @var{base}, size_t @var{n}, size_t @var{size})
This function randomly shuffles the order of @var{n} objects, each of
size @var{size}, stored in the array @var{base}[0..@var{n}-1]. The
output of the random number generator @var{r} is used to produce the
permutation. The algorithm generates all possible @math{n!}
permutations with equal probability, assuming a perfect source of random
numbers.
The following code shows how to shuffle the numbers from 0 to 51,
@example
int a[52];
for (i = 0; i < 52; i++)
@{
a[i] = i;
@}
gsl_ran_shuffle (r, a, 52, sizeof (int));
@end example
@end deftypefun
@deftypefun int gsl_ran_choose (const gsl_rng * @var{r}, void * @var{dest}, size_t @var{k}, void * @var{src}, size_t @var{n}, size_t @var{size})
This function fills the array @var{dest}[k] with @var{k} objects taken
randomly from the @var{n} elements of the array
@var{src}[0..@var{n}-1]. The objects are each of size @var{size}. The
output of the random number generator @var{r} is used to make the
selection. The algorithm ensures all possible samples are equally
likely, assuming a perfect source of randomness.
The objects are sampled @emph{without} replacement, thus each object can
only appear once in @var{dest}[k]. It is required that @var{k} be less
than or equal to @code{n}. The objects in @var{dest} will be in the
same relative order as those in @var{src}. You will need to call
@code{gsl_ran_shuffle(r, dest, n, size)} if you want to randomize the
order.
The following code shows how to select a random sample of three unique
numbers from the set 0 to 99,
@example
double a[3], b[100];
for (i = 0; i < 100; i++)
@{
b[i] = (double) i;
@}
gsl_ran_choose (r, a, 3, b, 100, sizeof (double));
@end example
@end deftypefun
@deftypefun void gsl_ran_sample (const gsl_rng * @var{r}, void * @var{dest}, size_t @var{k}, void * @var{src}, size_t @var{n}, size_t @var{size})
This function is like @code{gsl_ran_choose} but samples @var{k} items
from the original array of @var{n} items @var{src} with replacement, so
the same object can appear more than once in the output sequence
@var{dest}. There is no requirement that @var{k} be less than @var{n}
in this case.
@end deftypefun
@node Random Number Distribution Examples
@section Examples
The following program demonstrates the use of a random number generator
to produce variates from a distribution. It prints 10 samples from the
Poisson distribution with a mean of 3.
@example
@verbatiminclude examples/randpoisson.c
@end example
@noindent
If the library and header files are installed under @file{/usr/local}
(the default location) then the program can be compiled with these
options,
@example
$ gcc -Wall demo.c -lgsl -lgslcblas -lm
@end example
@noindent
Here is the output of the program,
@example
$ ./a.out
@verbatiminclude examples/randpoisson.txt
@end example
@noindent
The variates depend on the seed used by the generator. The seed for the
default generator type @code{gsl_rng_default} can be changed with the
@code{GSL_RNG_SEED} environment variable to produce a different stream
of variates,
@example
$ GSL_RNG_SEED=123 ./a.out
@verbatiminclude examples/randpoisson2.txt
@end example
@noindent
The following program generates a random walk in two dimensions.
@example
@verbatiminclude examples/randwalk.c
@end example
@noindent
Here is some output from the program, four 10-step random walks from the origin,
@tex
\centerline{\input random-walk.tex}
@end tex
The following program computes the upper and lower cumulative
distribution functions for the standard normal distribution at
@math{x=2}.
@example
@verbatiminclude examples/cdf.c
@end example
@noindent
Here is the output of the program,
@example
@verbatiminclude examples/cdf.txt
@end example
@node Random Number Distribution References and Further Reading
@section References and Further Reading
For an encyclopaedic coverage of the subject readers are advised to
consult the book @cite{Non-Uniform Random Variate Generation} by Luc
Devroye. It covers every imaginable distribution and provides hundreds
of algorithms.
@itemize @w{}
@item
Luc Devroye, @cite{Non-Uniform Random Variate Generation},
Springer-Verlag, ISBN 0-387-96305-7. Available online at
@uref{http://cg.scs.carleton.ca/~luc/rnbookindex.html}.
@end itemize
@noindent
The subject of random variate generation is also reviewed by Knuth, who
describes algorithms for all the major distributions.
@itemize @w{}
@item
Donald E. Knuth, @cite{The Art of Computer Programming: Seminumerical
Algorithms} (Vol 2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842.
@end itemize
@noindent
The Particle Data Group provides a short review of techniques for
generating distributions of random numbers in the ``Monte Carlo''
section of its Annual Review of Particle Physics.
@itemize @w{}
@item
@cite{Review of Particle Properties}
R.M. Barnett et al., Physical Review D54, 1 (1996)
@uref{http://pdg.lbl.gov/}.
@end itemize
@noindent
The Review of Particle Physics is available online in postscript and pdf
format.
@noindent
An overview of methods used to compute cumulative distribution functions
can be found in @cite{Statistical Computing} by W.J. Kennedy and
J.E. Gentle. Another general reference is @cite{Elements of Statistical
Computing} by R.A. Thisted.
@itemize @w{}
@item
William E. Kennedy and James E. Gentle, @cite{Statistical Computing} (1980),
Marcel Dekker, ISBN 0-8247-6898-1.
@end itemize
@itemize @w{}
@item
Ronald A. Thisted, @cite{Elements of Statistical Computing} (1988),
Chapman & Hall, ISBN 0-412-01371-1.
@end itemize
@noindent
The cumulative distribution functions for the Gaussian distribution
are based on the following papers,
@itemize @w{}
@item
@cite{Rational Chebyshev Approximations Using Linear Equations},
W.J. Cody, W. Fraser, J.F. Hart. Numerische Mathematik 12, 242--251 (1968).
@end itemize
@itemize @w{}
@item
@cite{Rational Chebyshev Approximations for the Error Function},
W.J. Cody. Mathematics of Computation 23, n107, 631--637 (July 1969).
@end itemize
|