File: rstat.texi

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (276 lines) | stat: -rw-r--r-- 8,014 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
@cindex running statistics
@cindex online statistics

This chapter describes routines for computing running statistics,
also known as online statistics, of data. These routines are
suitable for handling large datasets for which it may be
inconvenient or impractical to store in memory all at once.
The data can be processed in a single pass, one point at a time.
Each time a data point is added to the accumulator, internal
parameters are updated in order to compute the current mean, variance,
standard deviation, skewness, and kurtosis. These statistics are
exact, and are updated with numerically stable single-pass algorithms.
The median and arbitrary quantiles are also available, however these
calculations use algorithms which provide approximations, and grow
more accurate as more data is added to the accumulator.

The functions described in this chapter are declared in the header file
@file{gsl_rstat.h}.

@menu
* Running Statistics Initializing the Accumulator::
* Running Statistics Adding Data to the Accumulator::
* Running Statistics Current Statistics::
* Running Statistics Quantiles::      
* Running Statistics Example programs::  
* Running Statistics References and Further Reading::  
@end menu

@node Running Statistics Initializing the Accumulator
@section Initializing the Accumulator

@deftypefun {gsl_rstat_workspace *} gsl_rstat_alloc (void)
This function allocates a workspace for computing running statistics.
The size of the workspace is @math{O(1)}.
@end deftypefun

@deftypefun void gsl_rstat_free (gsl_rstat_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_rstat_reset (gsl_rstat_workspace * @var{w})
This function resets the workspace @var{w} to its initial state,
so it can begin working on a new set of data.
@end deftypefun

@node Running Statistics Adding Data to the Accumulator
@section Adding Data to the Accumulator

@deftypefun int gsl_rstat_add (const double @var{x}, gsl_rstat_workspace * @var{w})
This function adds the data point @var{x} to the statistical
accumulator, updating calculations of the mean, variance,
standard deviation, skewness, kurtosis, and median.
@end deftypefun

@deftypefun size_t gsl_rstat_n (gsl_rstat_workspace * @var{w})
This function returns the number of data so far added to the accumulator.
@end deftypefun

@node Running Statistics Current Statistics
@section Current Statistics

@deftypefun double gsl_rstat_min (gsl_rstat_workspace * @var{w})
This function returns the minimum value added to the accumulator.
@end deftypefun

@deftypefun double gsl_rstat_max (gsl_rstat_workspace * @var{w})
This function returns the maximum value added to the accumulator.
@end deftypefun

@deftypefun double gsl_rstat_mean (gsl_rstat_workspace * @var{w})
This function returns the mean of all data added to the accumulator,
defined as
@tex
\beforedisplay
$$
{\Hat\mu} = {1 \over N} \sum x_i
$$
\afterdisplay
@end tex
@ifinfo

@example
\Hat\mu = (1/N) \sum x_i
@end example

@end ifinfo
@end deftypefun

@deftypefun double gsl_rstat_variance (gsl_rstat_workspace * @var{w})
This function returns the variance of all data added to the accumulator,
defined as
@tex
\beforedisplay
$$
{\Hat\sigma}^2 = {1 \over (N-1)} \sum (x_i - {\Hat\mu})^2
$$
\afterdisplay
@end tex
@ifinfo

@example
\Hat\sigma^2 = (1/(N-1)) \sum (x_i - \Hat\mu)^2
@end example

@end ifinfo
@end deftypefun

@deftypefun double gsl_rstat_sd (gsl_rstat_workspace * @var{w})
This function returns the standard deviation of all data added to the
accumulator, defined as the square root of the variance given above.
@end deftypefun

@deftypefun double gsl_rstat_sd_mean (gsl_rstat_workspace * @var{w})
This function returns the standard deviation of the mean, defined as
@tex
\beforedisplay
$$
\Hat\sigma_{\Hat\mu} = {\Hat\sigma \over \sqrt{N}}
$$
\afterdisplay
@end tex
@ifinfo

@example
sd_mean = \Hat\sigma / \sqrt@{N@}
@end example

@end ifinfo
@end deftypefun

@deftypefun double gsl_rstat_rms (gsl_rstat_workspace * @var{w})
This function returns the root mean square of all data added to the
accumulator, defined as
@tex
\beforedisplay
$$
rms = \sqrt{{1 \over N} \sum x_i^2}
$$
\afterdisplay
@end tex
@ifinfo

@example
rms = \sqrt ( 1/N \sum x_i^2 )
@end example

@end ifinfo
@end deftypefun

@deftypefun double gsl_rstat_skew (gsl_rstat_workspace * @var{w})
This function returns the skewness of all data added to the accumulator,
defined as
@tex
\beforedisplay
$$
skew = {1 \over N} \sum 
 {\left( x_i - {\Hat\mu} \over {\Hat\sigma} \right)}^3
$$
\afterdisplay
@end tex
@ifinfo

@example
skew = (1/N) \sum ((x_i - \Hat\mu)/\Hat\sigma)^3
@end example

@end ifinfo
@end deftypefun

@deftypefun double gsl_rstat_kurtosis (gsl_rstat_workspace * @var{w})
This function returns the kurtosis of all data added to the accumulator,
defined as
@tex
\beforedisplay
$$
kurtosis = \left( {1 \over N} \sum 
 {\left(x_i - {\Hat\mu} \over {\Hat\sigma} \right)}^4 
 \right) 
 - 3
$$
\afterdisplay
@end tex
@ifinfo

@example
kurtosis = ((1/N) \sum ((x_i - \Hat\mu)/\Hat\sigma)^4)  - 3
@end example

@end ifinfo
@end deftypefun

@deftypefun double gsl_rstat_median (gsl_rstat_workspace * @var{w})
This function returns an estimate of the median of the data added to
the accumulator.
@end deftypefun

@node Running Statistics Quantiles
@section Quantiles

The functions in this section estimate quantiles dynamically without
storing the entire dataset, using the algorithm of Jain and Chlamtec, 1985.
Only five points (markers) are stored which represent the minimum
and maximum of the data, as well as current estimates of the
@math{p/2}-, @math{p}-, and @math{(1+p)/2}-quantiles. Each time
a new data point is added, the marker positions and heights are
updated.

@deftypefun {gsl_rstat_quantile_workspace *} gsl_rstat_quantile_alloc (const double @var{p})
This function allocates a workspace for the dynamic estimation of
@var{p}-quantiles, where @var{p} is between @math{0} and @math{1}.
The median corresponds to @math{p = 0.5}. The size of the workspace
is @math{O(1)}.
@end deftypefun

@deftypefun void gsl_rstat_quantile_free (gsl_rstat_quantile_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_rstat_quantile_reset (gsl_rstat_quantile_workspace * @var{w})
This function resets the workspace @var{w} to its initial state,
so it can begin working on a new set of data.
@end deftypefun

@deftypefun int gsl_rstat_quantile_add (const double @var{x}, gsl_rstat_quantile_workspace * @var{w})
This function updates the estimate of the @math{p}-quantile with
the new data point @var{x}.
@end deftypefun

@deftypefun double gsl_rstat_quantile_get (gsl_rstat_quantile_workspace * @var{w})
This function returns the current estimate of the @math{p}-quantile.
@end deftypefun

@node Running Statistics Example programs
@section Examples

Here is a basic example of how to use the statistical functions:

@example
@verbatiminclude examples/rstat.c
@end example

The program should produce the following output,

@example
@verbatiminclude examples/rstat.txt
@end example

@noindent
This next program estimates the lower quartile, median and upper
quartile from 10,000 samples of a random Rayleigh distribution,
using the @math{P^2} algorithm of Jain and Chlamtec. For
comparison, the exact values are also computed from the sorted
dataset.

@example
@verbatiminclude examples/rquantile.c
@end example

The program should produce the following output,

@example
@verbatiminclude examples/rquantile.txt
@end example

@node Running Statistics References and Further Reading
@section References and Further Reading

The algorithm used to dynamically estimate @math{p}-quantiles is described
in the paper,
@itemize @w{}
@item
R. Jain and I. Chlamtac.
@cite{The P^2 algorithm for dynamic calculation of quantiles and histograms without storing observations},
Communications of the ACM, Volume 28 (October), Number 10, 1985,
p. 1076-1085.
@end itemize