1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
@cindex Bessel functions
The routines described in this section compute the Cylindrical Bessel
functions @math{J_n(x)}, @math{Y_n(x)}, Modified cylindrical Bessel
functions @math{I_n(x)}, @math{K_n(x)}, Spherical Bessel functions
@math{j_l(x)}, @math{y_l(x)}, and Modified Spherical Bessel functions
@math{i_l(x)}, @math{k_l(x)}. For more information see Abramowitz & Stegun,
Chapters 9 and 10. The Bessel functions are defined in the header file
@file{gsl_sf_bessel.h}.
@menu
* Regular Cylindrical Bessel Functions::
* Irregular Cylindrical Bessel Functions::
* Regular Modified Cylindrical Bessel Functions::
* Irregular Modified Cylindrical Bessel Functions::
* Regular Spherical Bessel Functions::
* Irregular Spherical Bessel Functions::
* Regular Modified Spherical Bessel Functions::
* Irregular Modified Spherical Bessel Functions::
* Regular Bessel Function - Fractional Order::
* Irregular Bessel Functions - Fractional Order::
* Regular Modified Bessel Functions - Fractional Order::
* Irregular Modified Bessel Functions - Fractional Order::
* Zeros of Regular Bessel Functions::
@end menu
@node Regular Cylindrical Bessel Functions
@subsection Regular Cylindrical Bessel Functions
@cindex Cylindrical Bessel Functions
@cindex Regular Cylindrical Bessel Functions
@cindex J(x), Bessel Functions
@deftypefun double gsl_sf_bessel_J0 (double @var{x})
@deftypefunx int gsl_sf_bessel_J0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular cylindrical Bessel function of zeroth
order, @math{J_0(x)}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_bessel_J1 (double @var{x})
@deftypefunx int gsl_sf_bessel_J1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular cylindrical Bessel function of first
order, @math{J_1(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_Jn (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_bessel_Jn_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular cylindrical Bessel function of
order @var{n}, @math{J_n(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_Jn_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the regular cylindrical Bessel
functions @math{J_n(x)} for @math{n} from @var{nmin} to @var{nmax}
inclusive, storing the results in the array @var{result_array}. The
values are computed using recurrence relations for efficiency, and
therefore may differ slightly from the exact values.
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@node Irregular Cylindrical Bessel Functions
@subsection Irregular Cylindrical Bessel Functions
@cindex Irregular Cylindrical Bessel Functions
@cindex Y(x), Bessel Functions
@deftypefun double gsl_sf_bessel_Y0 (double @var{x})
@deftypefunx int gsl_sf_bessel_Y0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular cylindrical Bessel function of zeroth
order, @math{Y_0(x)}, for @math{x>0}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_Y1 (double @var{x})
@deftypefunx int gsl_sf_bessel_Y1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular cylindrical Bessel function of first
order, @math{Y_1(x)}, for @math{x>0}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_Yn (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_bessel_Yn_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular cylindrical Bessel function of
order @var{n}, @math{Y_n(x)}, for @math{x>0}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_Yn_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the irregular cylindrical Bessel
functions @math{Y_n(x)} for @math{n} from @var{nmin} to @var{nmax}
inclusive, storing the results in the array @var{result_array}. The
domain of the function is @math{x>0}. The values are computed using
recurrence relations for efficiency, and therefore may differ slightly
from the exact values.
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@node Regular Modified Cylindrical Bessel Functions
@subsection Regular Modified Cylindrical Bessel Functions
@cindex Modified Cylindrical Bessel Functions
@cindex Regular Modified Cylindrical Bessel Functions
@cindex I(x), Bessel Functions
@deftypefun double gsl_sf_bessel_I0 (double @var{x})
@deftypefunx int gsl_sf_bessel_I0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular modified cylindrical Bessel function
of zeroth order, @math{I_0(x)}.
@comment Exceptional Return Values: GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_I1 (double @var{x})
@deftypefunx int gsl_sf_bessel_I1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular modified cylindrical Bessel function
of first order, @math{I_1(x)}.
@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_In (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_bessel_In_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular modified cylindrical Bessel function
of order @var{n}, @math{I_n(x)}.
@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_In_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the regular modified cylindrical
Bessel functions @math{I_n(x)} for @math{n} from @var{nmin} to
@var{nmax} inclusive, storing the results in the array
@var{result_array}. The start of the range @var{nmin} must be positive
or zero. The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
@comment Domain: nmin >=0, nmax >= nmin
@comment Conditions: n=nmin,...,nmax, nmin >=0, nmax >= nmin
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_I0_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_I0_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified cylindrical Bessel
function of zeroth order @math{\exp(-|x|) I_0(x)}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_bessel_I1_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_I1_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified cylindrical Bessel
function of first order @math{\exp(-|x|) I_1(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_In_scaled (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_bessel_In_scaled_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified cylindrical Bessel
function of order @var{n}, @math{\exp(-|x|) I_n(x)}
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_In_scaled_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the scaled regular cylindrical
Bessel functions @math{\exp(-|x|) I_n(x)} for @math{n} from
@var{nmin} to @var{nmax} inclusive, storing the results in the array
@var{result_array}. The start of the range @var{nmin} must be positive
or zero. The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
@comment Domain: nmin >=0, nmax >= nmin
@comment Conditions: n=nmin,...,nmax
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@node Irregular Modified Cylindrical Bessel Functions
@subsection Irregular Modified Cylindrical Bessel Functions
@cindex Irregular Modified Cylindrical Bessel Functions
@cindex K(x), Bessel Functions
@deftypefun double gsl_sf_bessel_K0 (double @var{x})
@deftypefunx int gsl_sf_bessel_K0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular modified cylindrical Bessel
function of zeroth order, @math{K_0(x)}, for @math{x > 0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_K1 (double @var{x})
@deftypefunx int gsl_sf_bessel_K1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular modified cylindrical Bessel
function of first order, @math{K_1(x)}, for @math{x > 0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_Kn (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_bessel_Kn_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular modified cylindrical Bessel
function of order @var{n}, @math{K_n(x)}, for @math{x > 0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_Kn_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the irregular modified cylindrical
Bessel functions @math{K_n(x)} for @math{n} from @var{nmin} to
@var{nmax} inclusive, storing the results in the array
@var{result_array}. The start of the range @var{nmin} must be positive
or zero. The domain of the function is @math{x>0}. The values are
computed using recurrence relations for efficiency, and therefore
may differ slightly from the exact values.
@comment Conditions: n=nmin,...,nmax
@comment Domain: x > 0.0, nmin>=0, nmax >= nmin
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_K0_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_K0_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified cylindrical Bessel
function of zeroth order @math{\exp(x) K_0(x)} for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_bessel_K1_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_K1_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified cylindrical Bessel
function of first order @math{\exp(x) K_1(x)} for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_Kn_scaled (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_bessel_Kn_scaled_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified cylindrical Bessel
function of order @var{n}, @math{\exp(x) K_n(x)}, for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_Kn_scaled_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the scaled irregular cylindrical
Bessel functions @math{\exp(x) K_n(x)} for @math{n} from @var{nmin} to
@var{nmax} inclusive, storing the results in the array
@var{result_array}. The start of the range @var{nmin} must be positive
or zero. The domain of the function is @math{x>0}. The values are
computed using recurrence relations for efficiency, and therefore
may differ slightly from the exact values.
@comment Domain: x > 0.0, nmin >=0, nmax >= nmin
@comment Conditions: n=nmin,...,nmax
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@node Regular Spherical Bessel Functions
@subsection Regular Spherical Bessel Functions
@cindex Spherical Bessel Functions
@cindex Regular Spherical Bessel Functions
@cindex j(x), Bessel Functions
@deftypefun double gsl_sf_bessel_j0 (double @var{x})
@deftypefunx int gsl_sf_bessel_j0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular spherical Bessel function of zeroth
order, @math{j_0(x) = \sin(x)/x}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_bessel_j1 (double @var{x})
@deftypefunx int gsl_sf_bessel_j1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular spherical Bessel function of first
order, @math{j_1(x) = (\sin(x)/x - \cos(x))/x}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_j2 (double @var{x})
@deftypefunx int gsl_sf_bessel_j2_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular spherical Bessel function of second
order, @math{j_2(x) = ((3/x^2 - 1)\sin(x) - 3\cos(x)/x)/x}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_jl (int @var{l}, double @var{x})
@deftypefunx int gsl_sf_bessel_jl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular spherical Bessel function of
order @var{l}, @math{j_l(x)}, for @c{$l \geq 0$}
@math{l >= 0} and @c{$x \geq 0$}
@math{x >= 0}.
@comment Domain: l >= 0, x >= 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_jl_array (int @var{lmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the regular spherical Bessel
functions @math{j_l(x)} for @math{l} from 0 to @var{lmax}
inclusive for @c{$lmax \geq 0$}
@math{lmax >= 0} and @c{$x \geq 0$}
@math{x >= 0}, storing the results in the array @var{result_array}.
The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
@comment Domain: lmax >= 0
@comment Conditions: l=0,1,...,lmax
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_jl_steed_array (int @var{lmax}, double @var{x}, double * @var{result_array})
This routine uses Steed's method to compute the values of the regular
spherical Bessel functions @math{j_l(x)} for @math{l} from 0 to
@var{lmax} inclusive for @c{$lmax \geq 0$}
@math{lmax >= 0} and @c{$x \geq 0$}
@math{x >= 0}, storing the results in the array
@var{result_array}.
The Steed/Barnett algorithm is described in @cite{Comp. Phys. Comm.} 21,
297 (1981). Steed's method is more stable than the
recurrence used in the other functions but is also slower.
@comment Domain: lmax >= 0
@comment Conditions: l=0,1,...,lmax
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@node Irregular Spherical Bessel Functions
@subsection Irregular Spherical Bessel Functions
@cindex Irregular Spherical Bessel Functions
@cindex y(x), Bessel Functions
@deftypefun double gsl_sf_bessel_y0 (double @var{x})
@deftypefunx int gsl_sf_bessel_y0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular spherical Bessel function of zeroth
order, @math{y_0(x) = -\cos(x)/x}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_bessel_y1 (double @var{x})
@deftypefunx int gsl_sf_bessel_y1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular spherical Bessel function of first
order, @math{y_1(x) = -(\cos(x)/x + \sin(x))/x}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_y2 (double @var{x})
@deftypefunx int gsl_sf_bessel_y2_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular spherical Bessel function of second
order, @math{y_2(x) = (-3/x^3 + 1/x)\cos(x) - (3/x^2)\sin(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_yl (int @var{l}, double @var{x})
@deftypefunx int gsl_sf_bessel_yl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular spherical Bessel function of
order @var{l}, @math{y_l(x)}, for @c{$l \geq 0$}
@math{l >= 0}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_yl_array (int @var{lmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the irregular spherical Bessel
functions @math{y_l(x)} for @math{l} from 0 to @var{lmax}
inclusive for @c{$lmax \geq 0$}
@math{lmax >= 0}, storing the results in the array @var{result_array}.
The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
@comment Domain: lmax >= 0
@comment Conditions: l=0,1,...,lmax
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@node Regular Modified Spherical Bessel Functions
@subsection Regular Modified Spherical Bessel Functions
@cindex Modified Spherical Bessel Functions
@cindex Regular Modified Spherical Bessel Functions
@cindex i(x), Bessel Functions
The regular modified spherical Bessel functions @math{i_l(x)}
are related to the modified Bessel functions of fractional order,
@c{$i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x)$}
@math{i_l(x) = \sqrt@{\pi/(2x)@} I_@{l+1/2@}(x)}
@deftypefun double gsl_sf_bessel_i0_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_i0_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified spherical Bessel
function of zeroth order, @math{\exp(-|x|) i_0(x)}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_bessel_i1_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_i1_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified spherical Bessel
function of first order, @math{\exp(-|x|) i_1(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_i2_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_i2_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified spherical Bessel
function of second order, @math{ \exp(-|x|) i_2(x) }
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_il_scaled (int @var{l}, double @var{x})
@deftypefunx int gsl_sf_bessel_il_scaled_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified spherical Bessel
function of order @var{l}, @math{ \exp(-|x|) i_l(x) }
@comment Domain: l >= 0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_il_scaled_array (int @var{lmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the scaled regular modified
spherical Bessel functions @math{\exp(-|x|) i_l(x)} for @math{l} from
0 to @var{lmax} inclusive for @c{$lmax \geq 0$}
@math{lmax >= 0}, storing the results in
the array @var{result_array}.
The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
@comment Domain: lmax >= 0
@comment Conditions: l=0,1,...,lmax
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@node Irregular Modified Spherical Bessel Functions
@subsection Irregular Modified Spherical Bessel Functions
@cindex Irregular Modified Spherical Bessel Functions
@cindex k(x), Bessel Functions
The irregular modified spherical Bessel functions @math{k_l(x)}
are related to the irregular modified Bessel functions of fractional order,
@c{$k_l(x) = \sqrt{\pi/(2x)} K_{l+1/2}(x)$}
@math{k_l(x) = \sqrt@{\pi/(2x)@} K_@{l+1/2@}(x)}.
@deftypefun double gsl_sf_bessel_k0_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_k0_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified spherical Bessel
function of zeroth order, @math{\exp(x) k_0(x)}, for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_k1_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_k1_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified spherical Bessel
function of first order, @math{\exp(x) k_1(x)}, for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_k2_scaled (double @var{x})
@deftypefunx int gsl_sf_bessel_k2_scaled_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified spherical Bessel
function of second order, @math{\exp(x) k_2(x)}, for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_kl_scaled (int @var{l}, double @var{x})
@deftypefunx int gsl_sf_bessel_kl_scaled_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified spherical Bessel
function of order @var{l}, @math{\exp(x) k_l(x)}, for @math{x>0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_kl_scaled_array (int @var{lmax}, double @var{x}, double @var{result_array}[])
This routine computes the values of the scaled irregular modified
spherical Bessel functions @math{\exp(x) k_l(x)} for @math{l} from
0 to @var{lmax} inclusive for @c{$lmax \geq 0$}
@math{lmax >= 0} and @math{x>0}, storing the results in
the array @var{result_array}.
The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
@comment Domain: lmax >= 0
@comment Conditions: l=0,1,...,lmax
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@node Regular Bessel Function - Fractional Order
@subsection Regular Bessel Function---Fractional Order
@cindex Fractional Order Bessel Functions
@cindex Bessel Functions, Fractional Order
@cindex Regular Bessel Functions, Fractional Order
@deftypefun double gsl_sf_bessel_Jnu (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_Jnu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular cylindrical Bessel function of
fractional order @math{\nu}, @math{J_\nu(x)}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun int gsl_sf_bessel_sequence_Jnu_e (double @var{nu}, gsl_mode_t @var{mode}, size_t @var{size}, double @var{v}[])
This function computes the regular cylindrical Bessel function of
fractional order @math{\nu}, @math{J_\nu(x)}, evaluated at a series of
@math{x} values. The array @var{v} of length @var{size} contains the
@math{x} values. They are assumed to be strictly ordered and positive.
The array is over-written with the values of @math{J_\nu(x_i)}.
@comment Exceptional Return Values: GSL_EDOM, GSL_EINVAL
@end deftypefun
@node Irregular Bessel Functions - Fractional Order
@subsection Irregular Bessel Functions---Fractional Order
@deftypefun double gsl_sf_bessel_Ynu (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_Ynu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular cylindrical Bessel function of
fractional order @math{\nu}, @math{Y_\nu(x)}.
@comment Exceptional Return Values:
@end deftypefun
@node Regular Modified Bessel Functions - Fractional Order
@subsection Regular Modified Bessel Functions---Fractional Order
@cindex Modified Bessel Functions, Fractional Order
@cindex Regular Modified Bessel Functions, Fractional Order
@deftypefun double gsl_sf_bessel_Inu (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_Inu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the regular modified Bessel function of
fractional order @math{\nu}, @math{I_\nu(x)} for @math{x>0},
@math{\nu>0}.
@comment Domain: x >= 0, nu >= 0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_Inu_scaled (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_Inu_scaled_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled regular modified Bessel function of
fractional order @math{\nu}, @math{\exp(-|x|)I_\nu(x)} for @math{x>0},
@math{\nu>0}.
@comment @math{ \exp(-|x|) I_@{\nu@}(x) }
@comment Domain: x >= 0, nu >= 0
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Irregular Modified Bessel Functions - Fractional Order
@subsection Irregular Modified Bessel Functions---Fractional Order
@cindex Irregular Modified Bessel Functions, Fractional Order
@deftypefun double gsl_sf_bessel_Knu (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_Knu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the irregular modified Bessel function of
fractional order @math{\nu}, @math{K_\nu(x)} for @math{x>0},
@math{\nu>0}.
@comment Domain: x > 0, nu >= 0
@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_bessel_lnKnu (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_lnKnu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the logarithm of the irregular modified Bessel
function of fractional order @math{\nu}, @math{\ln(K_\nu(x))} for
@math{x>0}, @math{\nu>0}.
@comment Domain: x > 0, nu >= 0
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_bessel_Knu_scaled (double @var{nu}, double @var{x})
@deftypefunx int gsl_sf_bessel_Knu_scaled_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the scaled irregular modified Bessel function of
fractional order @math{\nu}, @math{\exp(+|x|) K_\nu(x)} for @math{x>0},
@math{\nu>0}.
@comment Domain: x > 0, nu >= 0
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Zeros of Regular Bessel Functions
@subsection Zeros of Regular Bessel Functions
@cindex Zeros of Regular Bessel Functions
@cindex Regular Bessel Functions, Zeros of
@deftypefun double gsl_sf_bessel_zero_J0 (unsigned int @var{s})
@deftypefunx int gsl_sf_bessel_zero_J0_e (unsigned int @var{s}, gsl_sf_result * @var{result})
These routines compute the location of the @var{s}-th positive zero of
the Bessel function @math{J_0(x)}.
@comment Exceptional Return Values:
@end deftypefun
@deftypefun double gsl_sf_bessel_zero_J1 (unsigned int @var{s})
@deftypefunx int gsl_sf_bessel_zero_J1_e (unsigned int @var{s}, gsl_sf_result * @var{result})
These routines compute the location of the @var{s}-th positive zero of
the Bessel function @math{J_1(x)}.
@comment Exceptional Return Values:
@end deftypefun
@deftypefun double gsl_sf_bessel_zero_Jnu (double @var{nu}, unsigned int @var{s})
@deftypefunx int gsl_sf_bessel_zero_Jnu_e (double @var{nu}, unsigned int @var{s}, gsl_sf_result * @var{result})
These routines compute the location of the @var{s}-th positive zero of
the Bessel function @math{J_\nu(x)}. The current implementation does not
support negative values of @var{nu}.
@comment Exceptional Return Values:
@end deftypefun
|