1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
@cindex Coulomb wave functions
@cindex hydrogen atom
The prototypes of the Coulomb functions are declared in the header file
@file{gsl_sf_coulomb.h}. Both bound state and scattering solutions are
available.
@menu
* Normalized Hydrogenic Bound States::
* Coulomb Wave Functions::
* Coulomb Wave Function Normalization Constant::
@end menu
@node Normalized Hydrogenic Bound States
@subsection Normalized Hydrogenic Bound States
@deftypefun double gsl_sf_hydrogenicR_1 (double @var{Z}, double @var{r})
@deftypefunx int gsl_sf_hydrogenicR_1_e (double @var{Z}, double @var{r}, gsl_sf_result * @var{result})
These routines compute the lowest-order normalized hydrogenic bound
state radial wavefunction @c{$R_1 := 2Z \sqrt{Z} \exp(-Z r)$}
@math{R_1 := 2Z \sqrt@{Z@} \exp(-Z r)}.
@end deftypefun
@deftypefun double gsl_sf_hydrogenicR (int @var{n}, int @var{l}, double @var{Z}, double @var{r})
@deftypefunx int gsl_sf_hydrogenicR_e (int @var{n}, int @var{l}, double @var{Z}, double @var{r}, gsl_sf_result * @var{result})
These routines compute the @var{n}-th normalized hydrogenic bound state
radial wavefunction,
@comment
@tex
\beforedisplay
$$
R_n := {2 Z^{3/2} \over n^2} \left({2Z r \over n}\right)^l \sqrt{(n-l-1)! \over (n+l)!} \exp(-Z r/n) L^{2l+1}_{n-l-1}(2Z r / n).
$$
\afterdisplay
@end tex
@ifinfo
@example
R_n := 2 (Z^@{3/2@}/n^2) \sqrt@{(n-l-1)!/(n+l)!@} \exp(-Z r/n) (2Zr/n)^l
L^@{2l+1@}_@{n-l-1@}(2Zr/n).
@end example
@end ifinfo
@noindent
where @math{L^a_b(x)} is the generalized Laguerre polynomial (@pxref{Laguerre Functions}).
The normalization is chosen such that the wavefunction @math{\psi} is
given by
@c{$\psi(n,l,r) = R_n Y_{lm}$}
@math{\psi(n,l,r) = R_n Y_@{lm@}}.
@end deftypefun
@node Coulomb Wave Functions
@subsection Coulomb Wave Functions
The Coulomb wave functions @math{F_L(\eta,x)}, @math{G_L(\eta,x)} are
described in Abramowitz & Stegun, Chapter 14. Because there can be a
large dynamic range of values for these functions, overflows are handled
gracefully. If an overflow occurs, @code{GSL_EOVRFLW} is signalled and
exponent(s) are returned through the modifiable parameters @var{exp_F},
@var{exp_G}. The full solution can be reconstructed from the following
relations,
@tex
\beforedisplay
$$
\eqalign{
F_L(\eta,x) &= fc[k_L] * \exp(exp_F)\cr
G_L(\eta,x) &= gc[k_L] * \exp(exp_G)\cr
\cr
F_L'(\eta,x) &= fcp[k_L] * \exp(exp_F)\cr
G_L'(\eta,x) &= gcp[k_L] * \exp(exp_G)
}
$$
\afterdisplay
@end tex
@ifinfo
@example
F_L(eta,x) = fc[k_L] * exp(exp_F)
G_L(eta,x) = gc[k_L] * exp(exp_G)
F_L'(eta,x) = fcp[k_L] * exp(exp_F)
G_L'(eta,x) = gcp[k_L] * exp(exp_G)
@end example
@end ifinfo
@noindent
@deftypefun int gsl_sf_coulomb_wave_FG_e (double @var{eta}, double @var{x}, double @var{L_F}, int @var{k}, gsl_sf_result * @var{F}, gsl_sf_result * @var{Fp}, gsl_sf_result * @var{G}, gsl_sf_result * @var{Gp}, double * @var{exp_F}, double * @var{exp_G})
This function computes the Coulomb wave functions @math{F_L(\eta,x)},
@c{$G_{L-k}(\eta,x)$}
@math{G_@{L-k@}(\eta,x)} and their derivatives
@math{F'_L(\eta,x)},
@c{$G'_{L-k}(\eta,x)$}
@math{G'_@{L-k@}(\eta,x)}
with respect to @math{x}. The parameters are restricted to @math{L,
L-k > -1/2}, @math{x > 0} and integer @math{k}. Note that @math{L}
itself is not restricted to being an integer. The results are stored in
the parameters @var{F}, @var{G} for the function values and @var{Fp},
@var{Gp} for the derivative values. If an overflow occurs,
@code{GSL_EOVRFLW} is returned and scaling exponents are stored in
the modifiable parameters @var{exp_F}, @var{exp_G}.
@end deftypefun
@deftypefun int gsl_sf_coulomb_wave_F_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double * @var{F_exponent})
This function computes the Coulomb wave function @math{F_L(\eta,x)} for
@math{L = Lmin \dots Lmin + kmax}, storing the results in @var{fc_array}.
In the case of overflow the exponent is stored in @var{F_exponent}.
@end deftypefun
@deftypefun int gsl_sf_coulomb_wave_FG_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double @var{gc_array}[], double * @var{F_exponent}, double * @var{G_exponent})
This function computes the functions @math{F_L(\eta,x)},
@math{G_L(\eta,x)} for @math{L = Lmin \dots Lmin + kmax} storing the
results in @var{fc_array} and @var{gc_array}. In the case of overflow the
exponents are stored in @var{F_exponent} and @var{G_exponent}.
@end deftypefun
@deftypefun int gsl_sf_coulomb_wave_FGp_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double @var{fcp_array}[], double @var{gc_array}[], double @var{gcp_array}[], double * @var{F_exponent}, double * @var{G_exponent})
This function computes the functions @math{F_L(\eta,x)},
@math{G_L(\eta,x)} and their derivatives @math{F'_L(\eta,x)},
@math{G'_L(\eta,x)} for @math{L = Lmin \dots Lmin + kmax} storing the
results in @var{fc_array}, @var{gc_array}, @var{fcp_array} and @var{gcp_array}.
In the case of overflow the exponents are stored in @var{F_exponent}
and @var{G_exponent}.
@end deftypefun
@deftypefun int gsl_sf_coulomb_wave_sphF_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double @var{F_exponent}[])
This function computes the Coulomb wave function divided by the argument
@math{F_L(\eta, x)/x} for @math{L = Lmin \dots Lmin + kmax}, storing the
results in @var{fc_array}. In the case of overflow the exponent is
stored in @var{F_exponent}. This function reduces to spherical Bessel
functions in the limit @math{\eta \to 0}.
@end deftypefun
@node Coulomb Wave Function Normalization Constant
@subsection Coulomb Wave Function Normalization Constant
The Coulomb wave function normalization constant is defined in
Abramowitz 14.1.7.
@deftypefun int gsl_sf_coulomb_CL_e (double @var{L}, double @var{eta}, gsl_sf_result * @var{result})
This function computes the Coulomb wave function normalization constant
@math{C_L(\eta)} for @math{L > -1}.
@end deftypefun
@deftypefun int gsl_sf_coulomb_CL_array (double @var{Lmin}, int @var{kmax}, double @var{eta}, double @var{cl}[])
This function computes the Coulomb wave function normalization constant
@math{C_L(\eta)} for @math{L = Lmin \dots Lmin + kmax}, @math{Lmin > -1}.
@end deftypefun
|