1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
@cindex elliptic integrals
The functions described in this section are declared in the header
file @file{gsl_sf_ellint.h}. Further information about the elliptic
integrals can be found in Abramowitz & Stegun, Chapter 17.
@menu
* Definition of Legendre Forms::
* Definition of Carlson Forms::
* Legendre Form of Complete Elliptic Integrals::
* Legendre Form of Incomplete Elliptic Integrals::
* Carlson Forms::
@end menu
@node Definition of Legendre Forms
@subsection Definition of Legendre Forms
@cindex Legendre forms of elliptic integrals
The Legendre forms of elliptic integrals @math{F(\phi,k)},
@math{E(\phi,k)} and @math{\Pi(\phi,k,n)} are defined by,
@tex
\beforedisplay
$$
\eqalign{
F(\phi,k) &= \int_0^\phi dt {1 \over \sqrt{(1 - k^2 \sin^2(t))}}\cr
E(\phi,k) &= \int_0^\phi dt \sqrt{(1 - k^2 \sin^2(t))}\cr
\Pi(\phi,k,n) &= \int_0^\phi dt {1 \over (1 + n \sin^2(t)) \sqrt{1 - k^2 \sin^2(t)}}
}
$$
\afterdisplay
@end tex
@ifinfo
@example
F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t)))
E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t)))
Pi(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t)))
@end example
@end ifinfo
@noindent
The complete Legendre forms are denoted by @math{K(k) = F(\pi/2, k)} and
@math{E(k) = E(\pi/2, k)}.
The notation used here is based on Carlson, @cite{Numerische
Mathematik} 33 (1979) 1 and differs slightly from that used by
Abramowitz & Stegun, where the functions are given in terms of the
parameter @math{m = k^2} and @math{n} is replaced by @math{-n}.
@node Definition of Carlson Forms
@subsection Definition of Carlson Forms
@cindex Carlson forms of Elliptic integrals
The Carlson symmetric forms of elliptical integrals @math{RC(x,y)},
@math{RD(x,y,z)}, @math{RF(x,y,z)} and @math{RJ(x,y,z,p)} are defined
by,
@tex
\beforedisplay
$$
\eqalign{
RC(x,y) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1}\cr
RD(x,y,z) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-3/2}\cr
RF(x,y,z) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2}\cr
RJ(x,y,z,p) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2} (t+p)^{-1}
}
$$
\afterdisplay
@end tex
@ifinfo
@example
RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1)
RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2)
RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2)
RJ(x,y,z,p) = 3/2 \int_0^\infty dt
(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)
@end example
@end ifinfo
@node Legendre Form of Complete Elliptic Integrals
@subsection Legendre Form of Complete Elliptic Integrals
@deftypefun double gsl_sf_ellint_Kcomp (double @var{k}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_Kcomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the complete elliptic integral @math{K(k)} to
the accuracy specified by the mode variable @var{mode}.
Note that Abramowitz & Stegun define this function in terms of the
parameter @math{m = k^2}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_Ecomp (double @var{k}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_Ecomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the complete elliptic integral @math{E(k)} to the
accuracy specified by the mode variable @var{mode}.
Note that Abramowitz & Stegun define this function in terms of the
parameter @math{m = k^2}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_Pcomp (double @var{k}, double @var{n}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_Pcomp_e (double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the complete elliptic integral @math{\Pi(k,n)} to the
accuracy specified by the mode variable @var{mode}.
Note that Abramowitz & Stegun define this function in terms of the
parameters @math{m = k^2} and @math{\sin^2(\alpha) = k^2}, with the
change of sign @math{n \to -n}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Legendre Form of Incomplete Elliptic Integrals
@subsection Legendre Form of Incomplete Elliptic Integrals
@deftypefun double gsl_sf_ellint_F (double @var{phi}, double @var{k}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_F_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{F(\phi,k)}
to the accuracy specified by the mode variable @var{mode}.
Note that Abramowitz & Stegun define this function in terms of the
parameter @math{m = k^2}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_E (double @var{phi}, double @var{k}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_E_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{E(\phi,k)}
to the accuracy specified by the mode variable @var{mode}.
Note that Abramowitz & Stegun define this function in terms of the
parameter @math{m = k^2}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_P (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_P_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{\Pi(\phi,k,n)}
to the accuracy specified by the mode variable @var{mode}.
Note that Abramowitz & Stegun define this function in terms of the
parameters @math{m = k^2} and @math{\sin^2(\alpha) = k^2}, with the
change of sign @math{n \to -n}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_D (double @var{phi}, double @var{k}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_D_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These functions compute the incomplete elliptic integral
@math{D(\phi,k)} which is defined through the Carlson form @math{RD(x,y,z)}
by the following relation,
@tex
\beforedisplay
$$
D(\phi,k) = {1 \over 3} (\sin \phi)^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1).
$$
\afterdisplay
@end tex
@ifinfo
@example
D(\phi,k) = (1/3)(\sin(\phi))^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1).
@end example
@end ifinfo
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Carlson Forms
@subsection Carlson Forms
@deftypefun double gsl_sf_ellint_RC (double @var{x}, double @var{y}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_RC_e (double @var{x}, double @var{y}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{RC(x,y)}
to the accuracy specified by the mode variable @var{mode}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_RD (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_RD_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{RD(x,y,z)}
to the accuracy specified by the mode variable @var{mode}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_RF (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_RF_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{RF(x,y,z)}
to the accuracy specified by the mode variable @var{mode}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@deftypefun double gsl_sf_ellint_RJ (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode})
@deftypefunx int gsl_sf_ellint_RJ_e (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})
These routines compute the incomplete elliptic integral @math{RJ(x,y,z,p)}
to the accuracy specified by the mode variable @var{mode}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
|