1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
@cindex exponential integrals
@cindex integrals, exponential
Information on the exponential integrals can be found in Abramowitz &
Stegun, Chapter 5. These functions are declared in the header file
@file{gsl_sf_expint.h}.
@menu
* Exponential Integral::
* Ei(x)::
* Hyperbolic Integrals::
* Ei_3(x)::
* Trigonometric Integrals::
* Arctangent Integral::
@end menu
@node Exponential Integral
@subsection Exponential Integral
@cindex E1(x), E2(x), Ei(x)
@deftypefun double gsl_sf_expint_E1 (double @var{x})
@deftypefunx int gsl_sf_expint_E1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the exponential integral @math{E_1(x)},
@tex
\beforedisplay
$$
E_1(x) := \Re \int_1^\infty dt \exp(-xt)/t.
$$
\afterdisplay
@end tex
@ifinfo
@example
E_1(x) := \Re \int_1^\infty dt \exp(-xt)/t.
@end example
@end ifinfo
@noindent
@comment Domain: x != 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_expint_E2 (double @var{x})
@deftypefunx int gsl_sf_expint_E2_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the second-order exponential integral @math{E_2(x)},
@tex
\beforedisplay
$$
E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2.
$$
\afterdisplay
@end tex
@ifinfo
@example
E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2.
@end example
@end ifinfo
@noindent
@comment Domain: x != 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_expint_En (int @var{n}, double @var{x})
@deftypefunx int gsl_sf_expint_En_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the exponential integral @math{E_n(x)} of order @math{n},
@tex
\beforedisplay
$$
E_n(x) := \Re \int_1^\infty dt \exp(-xt)/t^n.
$$
\afterdisplay
@end tex
@ifinfo
@example
E_n(x) := \Re \int_1^\infty dt \exp(-xt)/t^n.
@end example
@end ifinfo
@noindent
@comment Domain: x != 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@node Ei(x)
@subsection Ei(x)
@deftypefun double gsl_sf_expint_Ei (double @var{x})
@deftypefunx int gsl_sf_expint_Ei_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the exponential integral @c{$\hbox{Ei}(x)$}
@math{Ei(x)},
@tex
\beforedisplay
$$
\hbox{Ei}(x) := - PV\left(\int_{-x}^\infty dt \exp(-t)/t\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
Ei(x) := - PV(\int_@{-x@}^\infty dt \exp(-t)/t)
@end example
@end ifinfo
@noindent
where @math{PV} denotes the principal value of the integral.
@comment Domain: x != 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@node Hyperbolic Integrals
@subsection Hyperbolic Integrals
@cindex hyperbolic integrals
@cindex Shi(x)
@cindex Chi(x)
@deftypefun double gsl_sf_Shi (double @var{x})
@deftypefunx int gsl_sf_Shi_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the integral @c{$\hbox{Shi}(x) = \int_0^x dt \sinh(t)/t$}
@math{Shi(x) = \int_0^x dt \sinh(t)/t}.
@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_Chi (double @var{x})
@deftypefunx int gsl_sf_Chi_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the integral @c{$\hbox{Chi}(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t]$}
@math{ Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] },
where @math{\gamma_E} is the Euler constant (available as the macro @code{M_EULER}).
@comment Domain: x != 0.0
@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
@end deftypefun
@node Ei_3(x)
@subsection Ei_3(x)
@deftypefun double gsl_sf_expint_3 (double @var{x})
@deftypefunx int gsl_sf_expint_3_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the third-order exponential integral @c{${\rm Ei}_3(x) = \int_0^xdt \exp(-t^3)$}
@math{Ei_3(x) = \int_0^xdt \exp(-t^3)} for @c{$x \ge 0$}
@math{x >= 0}.
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Trigonometric Integrals
@subsection Trigonometric Integrals
@cindex trigonometric integrals
@cindex Si(x)
@cindex Ci(x)
@deftypefun double gsl_sf_Si (const double @var{x})
@deftypefunx int gsl_sf_Si_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the Sine integral @c{$\hbox{Si}(x) = \int_0^x dt \sin(t)/t$}
@math{Si(x) = \int_0^x dt \sin(t)/t}.
@comment Exceptional Return Values: none
@end deftypefun
@deftypefun double gsl_sf_Ci (const double @var{x})
@deftypefunx int gsl_sf_Ci_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the Cosine integral @c{$\hbox{Ci}(x) = -\int_x^\infty dt \cos(t)/t$}
@math{Ci(x) = -\int_x^\infty dt \cos(t)/t} for @math{x > 0}.
@comment Domain: x > 0.0
@comment Exceptional Return Values: GSL_EDOM
@end deftypefun
@node Arctangent Integral
@subsection Arctangent Integral
@cindex arctangent integral
@deftypefun double gsl_sf_atanint (double @var{x})
@deftypefunx int gsl_sf_atanint_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the Arctangent integral, which is defined as @c{$\hbox{AtanInt}(x) = \int_0^x dt \arctan(t)/t$}
@math{AtanInt(x) = \int_0^x dt \arctan(t)/t}.
@comment Domain:
@comment Exceptional Return Values:
@end deftypefun
|