1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
@cindex Fermi-Dirac function
The functions described in this section are declared in the header file
@file{gsl_sf_fermi_dirac.h}.
@menu
* Complete Fermi-Dirac Integrals::
* Incomplete Fermi-Dirac Integrals::
@end menu
@node Complete Fermi-Dirac Integrals
@subsection Complete Fermi-Dirac Integrals
@cindex complete Fermi-Dirac integrals
@cindex Fj(x), Fermi-Dirac integral
The complete Fermi-Dirac integral @math{F_j(x)} is given by,
@tex
\beforedisplay
$$
F_j(x) := {1\over\Gamma(j+1)} \int_0^\infty dt {t^j \over (\exp(t-x) + 1)}
$$
\afterdisplay
@end tex
@ifinfo
@example
F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
@end example
@end ifinfo
@noindent
Note that the Fermi-Dirac integral is sometimes defined without the
normalisation factor in other texts.
@deftypefun double gsl_sf_fermi_dirac_m1 (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_m1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral with an index of @math{-1}.
This integral is given by
@c{$F_{-1}(x) = e^x / (1 + e^x)$}
@math{F_@{-1@}(x) = e^x / (1 + e^x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_0 (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_0_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral with an index of @math{0}.
This integral is given by @math{F_0(x) = \ln(1 + e^x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_1 (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_1_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral with an index of @math{1},
@math{F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1))}.
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_2 (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_2_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral with an index
of @math{2},
@math{F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1))}.
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_int (int @var{j}, double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_int_e (int @var{j}, double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral with an integer
index of @math{j},
@math{F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1))}.
@comment Complete integral F_j(x) for integer j
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_mhalf (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_mhalf_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral
@c{$F_{-1/2}(x)$}
@math{F_@{-1/2@}(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_half (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_half_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral
@c{$F_{1/2}(x)$}
@math{F_@{1/2@}(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@deftypefun double gsl_sf_fermi_dirac_3half (double @var{x})
@deftypefunx int gsl_sf_fermi_dirac_3half_e (double @var{x}, gsl_sf_result * @var{result})
These routines compute the complete Fermi-Dirac integral
@c{$F_{3/2}(x)$}
@math{F_@{3/2@}(x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
@end deftypefun
@node Incomplete Fermi-Dirac Integrals
@subsection Incomplete Fermi-Dirac Integrals
@cindex incomplete Fermi-Dirac integral
@cindex Fj(x,b), incomplete Fermi-Dirac integral
The incomplete Fermi-Dirac integral @math{F_j(x,b)} is given by,
@tex
\beforedisplay
$$
F_j(x,b) := {1\over\Gamma(j+1)} \int_b^\infty dt {t^j \over (\exp(t-x) + 1)}
$$
\afterdisplay
@end tex
@ifinfo
@example
F_j(x,b) := (1/\Gamma(j+1)) \int_b^\infty dt (t^j / (\Exp(t-x) + 1))
@end example
@end ifinfo
@deftypefun double gsl_sf_fermi_dirac_inc_0 (double @var{x}, double @var{b})
@deftypefunx int gsl_sf_fermi_dirac_inc_0_e (double @var{x}, double @var{b}, gsl_sf_result * @var{result})
These routines compute the incomplete Fermi-Dirac integral with an index
of zero,
@c{$F_0(x,b) = \ln(1 + e^{b-x}) - (b-x)$}
@math{F_0(x,b) = \ln(1 + e^@{b-x@}) - (b-x)}.
@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EDOM
@end deftypefun
|