File: splinalg.texi

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (296 lines) | stat: -rw-r--r-- 9,772 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
@cindex sparse linear algebra
@cindex linear algebra, sparse

This chapter describes functions for solving sparse linear systems
of equations. The library provides linear algebra routines which
operate directly on the @code{gsl_spmatrix} and @code{gsl_vector}
objects.

@noindent
The functions described in this chapter are declared in the header file
@file{gsl_splinalg.h}.

@menu
* Overview of Sparse Linear Algebra::
* Sparse Iterative Solvers::
* Sparse Linear Algebra Examples::
* Sparse Linear Algebra References and Further Reading::
@end menu

@node Overview of Sparse Linear Algebra
@section Overview
@cindex sparse linear algebra, overview

This chapter is primarily concerned with the solution of the
linear system
@tex
\beforedisplay
$$
A x = b
$$
\afterdisplay
@end tex
@ifinfo
@example
A x = b
@end example
@end ifinfo
where @math{A} is a general square @math{n}-by-@math{n} non-singular
sparse matrix, @math{x} is an unknown @math{n}-by-@math{1} vector, and
@math{b} is a given @math{n}-by-1 right hand side vector. There exist
many methods for solving such sparse linear systems, which broadly
fall into either direct or iterative categories. Direct methods include
LU and QR decompositions, while iterative methods start with an
initial guess for the vector @math{x} and update the guess through
iteration until convergence. GSL does not currently provide any
direct sparse solvers.

@node Sparse Iterative Solvers
@section Sparse Iterative Solvers
@cindex sparse matrices, iterative solvers
@cindex sparse linear algebra, iterative solvers
@cindex sparse, iterative solvers

@menu
* Sparse Iterative Solver Overview::
* Sparse Iterative Solvers Types::
* Iterating the Sparse Linear System::
@end menu

@node Sparse Iterative Solver Overview
@subsection Overview

Many practical iterative methods of solving large @math{n}-by-@math{n}
sparse linear systems involve projecting an approximate solution for
@var{x} onto a subspace of @math{{\bf R}^n}. If we define a @math{m}-dimensional
subspace @math{{\cal K}} as the subspace of approximations to the solution
@var{x}, then @math{m} constraints must be imposed to determine
the next approximation. These @math{m} constraints define another
@math{m}-dimensional subspace denoted by @math{{\cal L}}. The
subspace dimension @math{m} is typically chosen to be much smaller than
@math{n} in order to reduce the computational
effort needed to generate the next approximate solution vector.
The many iterative algorithms which exist differ mainly
in their choice of @math{{\cal K}} and @math{{\cal L}}.

@node Sparse Iterative Solvers Types
@subsection Types of Sparse Iterative Solvers

The sparse linear algebra library provides the following types
of iterative solvers:

@deffn {Sparse Iterative Type} gsl_splinalg_itersolve_gmres
@cindex gmres
This specifies the Generalized Minimum Residual Method (GMRES).
This is a projection method using @math{{\cal K} = {\cal K}_m}
and @math{{\cal L} = A {\cal K}_m} where @math{{\cal K}_m} is
the @math{m}-th Krylov subspace
@tex
\beforedisplay
$$
{\cal K}_m = span \left\{ r_0, A r_0, ..., A^{m-1} r_0 \right\}
$$
\afterdisplay
@end tex
@ifinfo
@example
K_m = span( r_0, A r_0, ..., A^(m-1) r_0)
@end example
@end ifinfo
and @math{r_0 = b - A x_0} is the residual vector of the initial guess
@math{x_0}. If @math{m} is set equal to @math{n}, then the Krylov
subspace is @math{{\bf R}^n} and GMRES will provide the exact solution
@var{x}.  However, the goal is for the method to arrive at a very good
approximation to @var{x} using a much smaller subspace @math{{\cal K}_m}. By
default, the GMRES method selects @math{m = MIN(n,10)} but the user
may specify a different value for @math{m}. The GMRES storage
requirements grow as @math{O(n(m+1))} and the number of flops
grow as @math{O(4 m^2 n - 4 m^3 / 3)}.

In the below function @code{gsl_splinalg_itersolve_iterate}, one
GMRES iteration is defined as projecting the approximate solution
vector onto each Krylov subspace @math{{\cal K}_1, ..., {\cal K}_m},
and so @math{m} can be kept smaller by "restarting" the method
and calling @code{gsl_splinalg_itersolve_iterate} multiple times,
providing the updated approximation @var{x} to each new call. If
the method is not adequately converging, the user may try increasing
the parameter @math{m}.

GMRES is considered a robust general purpose iterative solver, however
there are cases where the method stagnates if the matrix is not
positive-definite and fails to reduce the residual until the very last
projection onto the subspace @math{{\cal K}_n = {\bf R}^n}. In these
cases, preconditioning the linear system can help, but GSL does not
currently provide any preconditioners.
@end deffn

@node Iterating the Sparse Linear System
@subsection Iterating the Sparse Linear System

The following functions are provided to allocate storage for the
sparse linear solvers and iterate the system to a solution.

@deftypefun {gsl_splinalg_itersolve *} gsl_splinalg_itersolve_alloc (const gsl_splinalg_itersolve_type * @var{T}, const size_t @var{n}, const size_t @var{m})
This function allocates a workspace for the iterative solution of
@var{n}-by-@var{n} sparse matrix systems. The iterative solver type
is specified by @var{T}. The argument @var{m} specifies the size
of the solution candidate subspace @math{{\cal K}_m}. The dimension
@var{m} may be set to 0 in which case a reasonable default value is used.
@end deftypefun

@deftypefun void gsl_splinalg_itersolve_free (gsl_splinalg_itersolve * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun {const char *} gsl_splinalg_itersolve_name (const gsl_splinalg_itersolve * @var{w})
This function returns a string pointer to the name of the solver.
@end deftypefun

@deftypefun int gsl_splinalg_itersolve_iterate (const gsl_spmatrix *@var{A}, const gsl_vector *@var{b}, const double @var{tol}, gsl_vector *@var{x}, gsl_splinalg_itersolve *@var{w})
This function performs one iteration of the iterative method for
the sparse linear system specfied by the matrix @var{A}, right hand
side vector @var{b} and solution vector @var{x}. On input, @var{x}
must be set to an initial guess for the solution. On output,
@var{x} is updated to give the current solution estimate. The
parameter @var{tol} specifies the relative tolerance between the residual
norm and norm of @var{b} in order to check for convergence.
When the following condition is satisfied:
@tex
\beforedisplay
$$
|| A x - b || \le tol \times || b ||
$$
\afterdisplay
@end tex
@ifinfo
@example
|| A x - b || <= tol * || b ||
@end example
@end ifinfo
the method has converged, the function returns @code{GSL_SUCCESS} and
the final solution is provided in @var{x}. Otherwise, the function
returns @code{GSL_CONTINUE} to signal that more iterations are
required. Here, @math{|| \cdot ||} represents the Euclidean norm.
The input matrix @var{A} may be in triplet or compressed column
format.
@end deftypefun

@deftypefun double gsl_splinalg_itersolve_normr (const gsl_splinalg_itersolve *@var{w})
This function returns the current residual norm
@math{||r|| = ||A x - b||}, which is updated after each call to
@code{gsl_splinalg_itersolve_iterate}.
@end deftypefun

@node Sparse Linear Algebra Examples
@section Examples
@cindex sparse linear algebra, examples

This example program demonstrates the sparse linear algebra routines on
the solution of a simple 1D Poisson equation on @math{[0,1]}:
@tex
\beforedisplay
$$
{d^2 u(x) \over dx^2} = f(x) = -\pi^2 \sin{(\pi x)}
$$
\afterdisplay
@end tex
@ifinfo
@example
u''(x) = f(x) = -\pi^2 \sin(\pi x)
@end example
@end ifinfo
with boundary conditions @math{u(0) = u(1) = 0}. The analytic solution of
this simple problem is @math{u(x) = \sin{\pi x}}. We will solve this
problem by finite differencing the left hand side to give
@tex
\beforedisplay
$$
{1 \over h^2} \left( u_{i+1} - 2 u_i + u_{i-1} \right) = f_i
$$
\afterdisplay
@end tex
@ifinfo
@example
1/h^2 ( u_(i+1) - 2 u_i + u_(i-1) ) = f_i
@end example
@end ifinfo
Defining a grid of @math{N} points, @math{h = 1/(N-1)}. In the finite
difference equation above, @math{u_0 = u_{N-1} = 0} are known from
the boundary conditions, so we will only put the equations for
@math{i = 1, ..., N-2} into the matrix system. The resulting
@math{(N-2) \times (N-2)} matrix equation is
@tex
\beforedisplay
$$
{1 \over h^2}
\left(
\matrix{
-2 & 1 & 0 & 0 & \ldots & 0 \cr
1 & -2 & 1 & 0 & \ldots & 0 \cr
0 & 1 & -2 & 1 & \ldots & 0 \cr
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \cr
0 & \ldots & \ldots & 1 & -2 & 1 \cr
0 & \ldots & \ldots & \ldots & 1 & -2 \cr
}
\right)
\left(
\matrix{
u_1 \cr
u_2 \cr
u_3 \cr
\vdots \cr
u_{N-3} \cr
u_{N-2} \cr
}
\right) =
\left(
\matrix{
f_1 \cr
f_2 \cr
f_3 \cr
\vdots \cr
f_{N-3} \cr
f_{N-2} \cr
}
\right)
$$
\afterdisplay
@end tex
An example program which constructs and solves this system is given below.
The system is solved using the iterative GMRES solver. Here is
the output of the program:

@example
iter 0 residual = 4.297275996844e-11
Converged
@end example
@noindent
showing that the method converged in a single iteration.
The calculated solution is shown in the following plot.

@page
@iftex
@center @image{sparse_poisson,6in}
@end iftex

@example
@verbatiminclude examples/poisson.c
@end example

@node Sparse Linear Algebra References and Further Reading
@section References and Further Reading
@cindex sparse linear algebra, references

The implementation of the GMRES iterative solver closely follows
the publications

@itemize @w{}
@item
H. F. Walker, Implementation of the GMRES method using
Householder transformations, SIAM J. Sci. Stat. Comput.
9(1), 1988.

@item
Y. Saad, Iterative methods for sparse linear systems, 2nd edition,
SIAM, 2003.
@end itemize