1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* eigen/gensymm.c
*
* Copyright (C) 2007 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <config.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
/*
* This module computes the eigenvalues of a real generalized
* symmetric-definite eigensystem A x = \lambda B x, where A and
* B are symmetric, and B is positive-definite.
*/
/*
gsl_eigen_gensymm_alloc()
Allocate a workspace for solving the generalized symmetric-definite
eigenvalue problem. The size of this workspace is O(2n).
Inputs: n - size of matrices
Return: pointer to workspace
*/
gsl_eigen_gensymm_workspace *
gsl_eigen_gensymm_alloc(const size_t n)
{
gsl_eigen_gensymm_workspace *w;
if (n == 0)
{
GSL_ERROR_NULL ("matrix dimension must be positive integer",
GSL_EINVAL);
}
w = (gsl_eigen_gensymm_workspace *) calloc (1, sizeof (gsl_eigen_gensymm_workspace));
if (w == 0)
{
GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
}
w->size = n;
w->symm_workspace_p = gsl_eigen_symm_alloc(n);
if (!w->symm_workspace_p)
{
gsl_eigen_gensymm_free(w);
GSL_ERROR_NULL("failed to allocate space for symm workspace", GSL_ENOMEM);
}
return (w);
} /* gsl_eigen_gensymm_alloc() */
/*
gsl_eigen_gensymm_free()
Free workspace w
*/
void
gsl_eigen_gensymm_free (gsl_eigen_gensymm_workspace * w)
{
RETURN_IF_NULL (w);
if (w->symm_workspace_p)
gsl_eigen_symm_free(w->symm_workspace_p);
free(w);
} /* gsl_eigen_gensymm_free() */
/*
gsl_eigen_gensymm()
Solve the generalized symmetric-definite eigenvalue problem
A x = \lambda B x
for the eigenvalues \lambda.
Inputs: A - real symmetric matrix
B - real symmetric and positive definite matrix
eval - where to store eigenvalues
w - workspace
Return: success or error
*/
int
gsl_eigen_gensymm (gsl_matrix * A, gsl_matrix * B, gsl_vector * eval,
gsl_eigen_gensymm_workspace * w)
{
const size_t N = A->size1;
/* check matrix and vector sizes */
if (N != A->size2)
{
GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
}
else if ((N != B->size1) || (N != B->size2))
{
GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN);
}
else if (eval->size != N)
{
GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
}
else if (w->size != N)
{
GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN);
}
else
{
int s;
/* compute Cholesky factorization of B */
s = gsl_linalg_cholesky_decomp1(B);
if (s != GSL_SUCCESS)
return s; /* B is not positive definite */
/* transform to standard symmetric eigenvalue problem */
gsl_eigen_gensymm_standardize(A, B);
s = gsl_eigen_symm(A, eval, w->symm_workspace_p);
return s;
}
} /* gsl_eigen_gensymm() */
/*
gsl_eigen_gensymm_standardize()
Reduce the generalized symmetric-definite eigenproblem to
the standard symmetric eigenproblem by computing
C = L^{-1} A L^{-t}
where L L^t is the Cholesky decomposition of B
Inputs: A - (input/output) real symmetric matrix
B - real symmetric, positive definite matrix in Cholesky form
Return: success
Notes: A is overwritten by L^{-1} A L^{-t}
*/
int
gsl_eigen_gensymm_standardize(gsl_matrix *A, const gsl_matrix *B)
{
const size_t N = A->size1;
size_t i;
double a, b, c;
for (i = 0; i < N; ++i)
{
/* update lower triangle of A(i:n, i:n) */
a = gsl_matrix_get(A, i, i);
b = gsl_matrix_get(B, i, i);
a /= b * b;
gsl_matrix_set(A, i, i, a);
if (i < N - 1)
{
gsl_vector_view ai = gsl_matrix_subcolumn(A, i, i + 1, N - i - 1);
gsl_matrix_view ma =
gsl_matrix_submatrix(A, i + 1, i + 1, N - i - 1, N - i - 1);
gsl_vector_const_view bi =
gsl_matrix_const_subcolumn(B, i, i + 1, N - i - 1);
gsl_matrix_const_view mb =
gsl_matrix_const_submatrix(B, i + 1, i + 1, N - i - 1, N - i - 1);
gsl_blas_dscal(1.0 / b, &ai.vector);
c = -0.5 * a;
gsl_blas_daxpy(c, &bi.vector, &ai.vector);
gsl_blas_dsyr2(CblasLower, -1.0, &ai.vector, &bi.vector, &ma.matrix);
gsl_blas_daxpy(c, &bi.vector, &ai.vector);
gsl_blas_dtrsv(CblasLower,
CblasNoTrans,
CblasNonUnit,
&mb.matrix,
&ai.vector);
}
}
return GSL_SUCCESS;
} /* gsl_eigen_gensymm_standardize() */
|