1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/* fft/real_radix2.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
int
FUNCTION(gsl_fft_real,radix2_transform) (BASE data[], const size_t stride, const size_t n)
{
int result ;
size_t p, p_1, q;
size_t i;
size_t logn = 0;
int status;
if (n == 1) /* identity operation */
{
return 0 ;
}
/* make sure that n is a power of 2 */
result = fft_binary_logn(n) ;
if (result == -1)
{
GSL_ERROR ("n is not a power of 2", GSL_EINVAL);
}
else
{
logn = result ;
}
/* bit reverse the ordering of input data for decimation in time algorithm */
status = FUNCTION(fft_real,bitreverse_order)(data, stride, n, logn) ;
/* apply fft recursion */
p = 1; q = n ;
for (i = 1; i <= logn; i++)
{
size_t a, b;
p_1 = p ;
p = 2 * p ;
q = q / 2 ;
/* a = 0 */
for (b = 0; b < q; b++)
{
ATOMIC t0_real = VECTOR(data,stride,b*p) + VECTOR(data,stride,b*p + p_1) ;
ATOMIC t1_real = VECTOR(data,stride,b*p) - VECTOR(data,stride,b*p + p_1) ;
VECTOR(data,stride,b*p) = t0_real ;
VECTOR(data,stride,b*p + p_1) = t1_real ;
}
/* a = 1 ... p_{i-1}/2 - 1 */
{
ATOMIC w_real = 1.0;
ATOMIC w_imag = 0.0;
const double theta = - 2.0 * M_PI / p;
const ATOMIC s = sin (theta);
const ATOMIC t = sin (theta / 2.0);
const ATOMIC s2 = 2.0 * t * t;
for (a = 1; a < (p_1)/2; a++)
{
/* trignometric recurrence for w-> exp(i theta) w */
{
const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real;
const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag;
w_real = tmp_real;
w_imag = tmp_imag;
}
for (b = 0; b < q; b++)
{
ATOMIC z0_real = VECTOR(data,stride,b*p + a) ;
ATOMIC z0_imag = VECTOR(data,stride,b*p + p_1 - a) ;
ATOMIC z1_real = VECTOR(data,stride,b*p + p_1 + a) ;
ATOMIC z1_imag = VECTOR(data,stride,b*p + p - a) ;
/* t0 = z0 + w * z1 */
ATOMIC t0_real = z0_real + w_real * z1_real - w_imag * z1_imag;
ATOMIC t0_imag = z0_imag + w_real * z1_imag + w_imag * z1_real;
/* t1 = z0 - w * z1 */
ATOMIC t1_real = z0_real - w_real * z1_real + w_imag * z1_imag;
ATOMIC t1_imag = z0_imag - w_real * z1_imag - w_imag * z1_real;
VECTOR(data,stride,b*p + a) = t0_real ;
VECTOR(data,stride,b*p + p - a) = t0_imag ;
VECTOR(data,stride,b*p + p_1 - a) = t1_real ;
VECTOR(data,stride,b*p + p_1 + a) = -t1_imag ;
}
}
}
if (p_1 > 1)
{
for (b = 0; b < q; b++)
{
/* a = p_{i-1}/2 */
VECTOR(data,stride,b*p + p - p_1/2) *= -1 ;
}
}
}
return 0;
}
|