1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/* gsl_histogram_stat.c
* Copyright (C) 2000 Simone Piccardi
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this library; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/***************************************************************
*
* File gsl_histogram_stat.c:
* Routines for statisticalcomputations on histograms.
* Need GSL library and header.
* Contains the routines:
* gsl_histogram_mean compute histogram mean
* gsl_histogram_sigma compute histogram sigma
*
* Author: S. Piccardi
* Jan. 2000
*
***************************************************************/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_histogram.h>
/* FIXME: We skip negative values in the histogram h->bin[i] < 0,
since those correspond to negative weights (BJG) */
double
gsl_histogram_mean (const gsl_histogram * h)
{
const size_t n = h->n;
size_t i;
/* Compute the bin-weighted arithmetic mean M of a histogram using the
recurrence relation
M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n)))
W(n) = W(n-1) + w(n)
*/
long double wmean = 0;
long double W = 0;
for (i = 0; i < n; i++)
{
double xi = (h->range[i + 1] + h->range[i]) / 2;
double wi = h->bin[i];
if (wi > 0)
{
W += wi;
wmean += (xi - wmean) * (wi / W);
}
}
return wmean;
}
double
gsl_histogram_sigma (const gsl_histogram * h)
{
const size_t n = h->n;
size_t i;
long double wvariance = 0 ;
long double wmean = 0;
long double W = 0;
/* Use a two-pass algorithm for stability. Could also use a single
pass formula, as given in N.J.Higham 'Accuracy and Stability of
Numerical Methods', p.12 */
/* Compute the mean */
for (i = 0; i < n; i++)
{
double xi = (h->range[i + 1] + h->range[i]) / 2;
double wi = h->bin[i];
if (wi > 0)
{
W += wi;
wmean += (xi - wmean) * (wi / W);
}
}
/* Compute the variance */
W = 0.0;
for (i = 0; i < n; i++)
{
double xi = ((h->range[i + 1]) + (h->range[i])) / 2;
double wi = h->bin[i];
if (wi > 0) {
const long double delta = (xi - wmean);
W += wi ;
wvariance += (delta * delta - wvariance) * (wi / W);
}
}
{
double sigma = sqrt (wvariance) ;
return sigma;
}
}
/*
sum up all bins of histogram
*/
double
gsl_histogram_sum(const gsl_histogram * h)
{
double sum=0;
size_t i=0;
size_t n;
n=h->n;
while(i < n)
sum += h->bin[i++];
return sum;
}
|