1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/* integration/tests.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include "tests.h"
/* These are the test functions from table 4.1 of the QUADPACK book */
/* f1(x) = x^alpha * log(1/x) */
/* integ(f1,x,0,1) = 1/(alpha + 1)^2 */
double f1 (double x, void * params) {
double alpha = *(double *) params ;
return pow(x,alpha) * log(1/x) ;
}
/* f2(x) = 4^-alpha / ((x-pi/4)^2 + 16^-alpha) */
/* integ(f2,x,0,1) = arctan((4-pi)4^(alpha-1)) + arctan(pi 4^(alpha-1)) */
double f2 (double x, void * params) {
double alpha = *(double *) params ;
return pow(4.0,-alpha) / (pow((x-M_PI/4.0),2.0) + pow(16.0,-alpha)) ;
}
/* f3(x) = cos(2^alpha * sin(x)) */
/* integ(f3,x,0,pi) = pi J_0(2^alpha) */
double f3 (double x, void * params) {
double alpha = *(double *) params ;
return cos(pow(2.0,alpha) * sin(x)) ;
}
/* Functions 4, 5 and 6 are duplicates of functions 1, 2 and 3 */
/* .... */
/* f7(x) = |x - 1/3|^alpha */
/* integ(f7,x,0,1) = ((2/3)^(alpha+1) + (1/3)^(alpha+1))/(alpha + 1) */
double f7 (double x, void * params) {
double alpha = *(double *) params ;
return pow(fabs(x - (1.0/3.0)),alpha) ;
}
/* f8(x) = |x - pi/4|^alpha */
/* integ(f8,x,0,1) =
((1 - pi/4)^(alpha+1) + (pi/4)^(alpha+1))/(alpha + 1) */
double f8 (double x, void * params) {
double alpha = *(double *) params ;
return pow(fabs(x - (M_PI/4.0)),alpha) ;
}
/* f9(x) = sqrt(1 - x^2) / (x + 1 + 2^-alpha) */
/* integ(f9,x,-1,1) = pi/sqrt((1+2^-alpha)^2-1) */
double f9 (double x, void * params) {
double alpha = *(double *) params ;
return 1 / ((x + 1 + pow(2.0,-alpha)) * sqrt(1-x*x)) ;
}
/* f10(x) = sin(x)^(alpha - 1) */
/* integ(f10,x,0,pi/2) = 2^(alpha-2) ((Gamma(alpha/2))^2)/Gamma(alpha) */
double f10 (double x, void * params) {
double alpha = *(double *) params ;
return pow(sin(x), alpha-1) ;
}
/* f11(x) = log(1/x)^(alpha - 1) */
/* integ(f11,x,0,1) = Gamma(alpha) */
double f11 (double x, void * params) {
double alpha = *(double *) params ;
return pow(log(1/x), alpha-1) ;
}
/* f12(x) = exp(20*(x-1)) * sin(2^alpha * x) */
/* integ(f12,x,0,1) =
(20 sin(2^alpha) - 2^alpha cos(2^alpha) + 2^alpha exp(-20))
/(400 + 4^alpha) */
double f12 (double x, void * params) {
double alpha = *(double *) params ;
return exp(20*(x-1)) * sin(pow(2.0,alpha) * x) ;
}
/* f13(x) = cos(2^alpha * x)/sqrt(x(1 - x)) */
/* integ(f13,x,0,1) = pi cos(2^(alpha-1)) J_0(2^(alpha-1)) */
double f13 (double x, void * params) {
double alpha = *(double *) params ;
return cos(pow(2.0,alpha)*x)/sqrt(x*(1-x)) ;
}
double f14 (double x, void * params) {
double alpha = *(double *) params ;
return exp(-pow(2.0,-alpha)*x)*cos(x)/sqrt(x) ;
}
double f15 (double x, void * params) {
double alpha = *(double *) params ;
return x*x * exp(-pow(2.0,-alpha)*x) ;
}
double f16 (double x, void * params) {
double alpha = *(double *) params ;
if (x==0 && alpha == 1) return 1 ; /* make the function continuous in x */
if (x==0 && alpha > 1) return 0 ; /* avoid problems with pow(0,1) */
return pow(x,alpha-1)/pow((1+10*x),2.0) ;
}
double f17 (double x, void * params) {
double alpha = *(double *) params ;
return pow(2.0,-alpha)/(((x-1)*(x-1)+pow(4.0,-alpha))*(x-2)) ;
}
/* f454(x) = x^3 log|(x^2-1)(x^2-2)| */
/* integ(f454,x,0,inf) = 61 log(2) + (77/4) log(7) - 27 */
double f454 (double x, void * params) {
double x2 = x * x;
double x3 = x * x2;
params = 0 ;
return x3 * log(fabs((x2 - 1.0) * (x2 - 2.0))) ;
}
/* f455(x) = log(x)/(1+100*x^2) */
/* integ(f455,x,0,inf) = -log(10)/20 */
double f455 (double x, void * params) {
params = 0 ;
return log(x) / (1.0 + 100.0 * x * x) ;
}
/* f456(x) = log(x) */
/* integ(f456*sin(10 pi x),x,0,1) = -(gamma + log(10pi) - Ci(10pi))/(10pi) */
double f456 (double x, void * params) {
params = 0 ;
if (x == 0.0)
{
return 0;
}
return log(x) ;
}
/* f457(x) = 1/sqrt(x) */
/* integ(f457*cos(pi x / 2),x,0,+inf) = 1 */
double f457 (double x, void * params) {
params = 0 ;
if (x == 0.0)
{
return 0;
}
return 1/sqrt(x) ;
}
/* f458(x) = 1/(1 + log(x)^2)^2 */
/* integ(log(x) f458(x),x,0,1) = (Ci(1) sin(1) + (pi/2 - Si(1)) cos(1))/pi
= -0.1892752 */
double f458 (double x, void * params) {
params = 0 ;
if (x == 0.0)
{
return 0;
}
else
{
double u = log(x);
double v = 1 + u * u;
return 1.0 / (v * v) ;
}
}
/* f459(x) = 1/(5 x^3 + 6) */
/* integ(f459/(x-0),x,-1,5) = log(125/631)/18 */
double f459 (double x, void * params) {
params = 0 ;
return 1.0 / (5.0 * x * x * x + 6.0) ;
}
/* myfn1(x) = exp(-x - x^2) */
/* integ(myfn1,x,-inf,inf) = sqrt(pi) exp(-1/4) */
double myfn1 (double x, void * params) {
params = 0;
return exp(-x - x*x) ;
}
/* myfn2(x) = exp(alpha*x) */
/* integ(myfn2,x,-inf,b) = exp(alpha*b)/alpha */
double myfn2 (double x, void * params) {
double alpha = *(double *) params ;
return exp(alpha*x) ;
}
/* f_monomial = constant * x^degree */
double f_monomial(double x, void * params)
{
struct monomial_params * p = (struct monomial_params *) params;
return p->constant * gsl_pow_int(x, p->degree);
}
/* integ(f_monomial,x,a b)=constant*(b^(degree+1)-a^(degree+1))/(degree+1) */
double integ_f_monomial(double a, double b, struct monomial_params * p)
{
const int degreep1 = p->degree + 1;
const double bnp1 = gsl_pow_int(b, degreep1);
const double anp1 = gsl_pow_int(a, degreep1);
return (p->constant / degreep1)*(bnp1 - anp1);
}
/* f(x) = sin(x) */
double f_sin(double x, void * params)
{
return sin(x);
}
/* integ(f_sin,x,a,b) */
double integ_f_sin(double a, double b)
{
return -cos(b) + cos(a);
}
/* The test functions. */
double cqf1 ( double x , void *params ) {
return exp(x);
}
double cqf2 ( double x , void *params ) {
return x >= 0.3;
}
double cqf3 ( double x , void *params ) {
return sqrt(x);
}
double cqf4 ( double x , void *params ) {
return (23.0/25) * cosh(x) - cos(x);
}
double cqf5 ( double x , void *params ) {
double x2 = x*x;
return 1.0 / ( x2 * (x2 + 1) + 0.9);
}
double cqf6 ( double x , void *params ) {
return x * sqrt( x );
}
double cqf7 ( double x , void *params ) {
return 1.0 / sqrt(x);
}
double cqf8 ( double x , void *params ) {
double x2 = x*x;
return 1.0 / (1 + x2*x2);
}
double cqf9 ( double x , void *params ) {
return 2.0 / (2 + sin(10*M_PI*x));
}
double cqf10 ( double x , void *params ) {
return 1.0 / (1 + x);
}
double cqf11 ( double x , void *params ) {
return 1.0 / (1 + exp(x));
}
double cqf12 ( double x , void *params ) {
return x / (exp(x) - 1.0);
}
double cqf13 ( double x , void *params ) {
return sin(100 * M_PI * x) / (M_PI * x);
}
double cqf14 ( double x , void *params ) {
return sqrt(50.0) * exp(-50*M_PI*x*x);
}
double cqf15 ( double x , void *params ) {
return 25.0 * exp(-25*x);
}
double cqf16 ( double x , void *params ) {
return 50 / M_PI * (2500 * x*x + 1);
}
double cqf17 ( double x , void *params ) {
double t1 = 50 * M_PI * x ,t2;
t2 = sin(t1) / t1;
return 50 * t2 * t2;
}
double cqf18 ( double x , void *params ) {
return cos( cos(x) + 3*sin(x) + 2*cos(2*x) + 3*sin(2*x) + 3*cos(3*x) );
}
double cqf19 ( double x , void *params ) {
return log(x);
}
double cqf20 ( double x , void *params ) {
return 1 / (x*x + 1.005);
}
double cqf21 ( double x , void *params ) {
return 1 / cosh( 10 * (x - 0.2) * 2 ) +
1 / cosh( 100 * (x - 0.4) * 4 ) +
1 / cosh( 1000 * (x - 0.6) * 8 );
}
double cqf22 ( double x , void *params ) {
return 4 * M_PI*M_PI * x * sin(20*M_PI*x) * cos(2*M_PI*x);
}
double cqf23 ( double x , void *params ) {
double t = 230*x - 30;
return 1 / (1 + t*t);
}
double cqf24 ( double x , void *params ) {
return floor(exp(x));
}
double cqf25 ( double x , void *params ) {
return (x < 1) * (x + 1) +
(1 <= x && x <= 3) * (3 - x) +
(x > 3) * 2;
}
|