1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* linalg/balance.c
*
* Copyright (C) 2006 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Balance a general matrix by scaling the rows and columns, so the
* new row and column norms are the same order of magnitude.
*
* B = D^-1 A D
*
* where D is a diagonal matrix
*
* This is necessary for the unsymmetric eigenvalue problem since the
* calculation can become numerically unstable for unbalanced
* matrices.
*
* See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 7.5.7
* and Wilkinson & Reinsch, "Handbook for Automatic Computation", II/11 p320.
*/
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#define FLOAT_RADIX 2.0
#define FLOAT_RADIX_SQ (FLOAT_RADIX * FLOAT_RADIX)
int
gsl_linalg_balance_matrix(gsl_matrix * A, gsl_vector * D)
{
const size_t N = A->size1;
if (N != D->size)
{
GSL_ERROR ("vector must match matrix size", GSL_EBADLEN);
}
else
{
double row_norm,
col_norm;
int not_converged;
gsl_vector_view v;
/* initialize D to the identity matrix */
gsl_vector_set_all(D, 1.0);
not_converged = 1;
while (not_converged)
{
size_t i, j;
double g, f, s;
not_converged = 0;
for (i = 0; i < N; ++i)
{
row_norm = 0.0;
col_norm = 0.0;
for (j = 0; j < N; ++j)
{
if (j != i)
{
col_norm += fabs(gsl_matrix_get(A, j, i));
row_norm += fabs(gsl_matrix_get(A, i, j));
}
}
if ((col_norm == 0.0) || (row_norm == 0.0))
{
continue;
}
g = row_norm / FLOAT_RADIX;
f = 1.0;
s = col_norm + row_norm;
/*
* find the integer power of the machine radix which
* comes closest to balancing the matrix
*/
while (col_norm < g)
{
f *= FLOAT_RADIX;
col_norm *= FLOAT_RADIX_SQ;
}
g = row_norm * FLOAT_RADIX;
while (col_norm > g)
{
f /= FLOAT_RADIX;
col_norm /= FLOAT_RADIX_SQ;
}
if ((row_norm + col_norm) < 0.95 * s * f)
{
not_converged = 1;
g = 1.0 / f;
/*
* apply similarity transformation D, where
* D_{ij} = f_i * delta_{ij}
*/
/* multiply by D^{-1} on the left */
v = gsl_matrix_row(A, i);
gsl_blas_dscal(g, &v.vector);
/* multiply by D on the right */
v = gsl_matrix_column(A, i);
gsl_blas_dscal(f, &v.vector);
/* keep track of transformation */
gsl_vector_set(D, i, gsl_vector_get(D, i) * f);
}
}
}
return GSL_SUCCESS;
}
} /* gsl_linalg_balance_matrix() */
/*
gsl_linalg_balance_accum()
Accumulate a balancing transformation into a matrix.
This is used during the computation of Schur vectors since the
Schur vectors computed are the vectors for the balanced matrix.
We must at some point accumulate the balancing transformation into
the Schur vector matrix to get the vectors for the original matrix.
A -> D A
where D is the diagonal matrix
Inputs: A - matrix to transform
D - vector containing diagonal elements of D
*/
int
gsl_linalg_balance_accum(gsl_matrix *A, gsl_vector *D)
{
const size_t N = A->size1;
if (N != D->size)
{
GSL_ERROR ("vector must match matrix size", GSL_EBADLEN);
}
else
{
size_t i;
double s;
gsl_vector_view r;
for (i = 0; i < N; ++i)
{
s = gsl_vector_get(D, i);
r = gsl_matrix_row(A, i);
gsl_blas_dscal(s, &r.vector);
}
return GSL_SUCCESS;
}
} /* gsl_linalg_balance_accum() */
|