1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
/* Cholesky Decomposition
*
* Copyright (C) 2000 Thomas Walter
* Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007 Brian Gough, Gerard Jungman
* Copyright (C) 2016 Patrick Alken
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 3, or (at your option) any
* later version.
*
* This source is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* 03 May 2000: Modified for GSL by Brian Gough
* 29 Jul 2005: Additions by Gerard Jungman
* 04 Mar 2016: Change Cholesky algorithm to gaxpy version by Patrick Alken
*/
/*
* Cholesky decomposition of a symmetrix positive definite matrix.
* This is useful to solve the matrix arising in
* periodic cubic splines
* approximating splines
*
* This algorithm does:
* A = L * L'
* with
* L := lower left triangle matrix
* L' := the transposed form of L.
*
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
static double cholesky_norm1(const gsl_matrix * LLT, gsl_vector * work);
static int cholesky_Ainv(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params);
/*
In GSL 2.2, we decided to modify the behavior of the Cholesky decomposition
to store the Cholesky factor in the lower triangle, and store the original
matrix in the upper triangle. Previous versions stored the Cholesky factor in
both places. The routine gsl_linalg_cholesky_decomp1 was added for the new
behavior, and gsl_linalg_cholesky_decomp is maintained for backward compatibility.
It will be removed in a future release.
*/
int
gsl_linalg_cholesky_decomp (gsl_matrix * A)
{
int status;
status = gsl_linalg_cholesky_decomp1(A);
if (status == GSL_SUCCESS)
{
gsl_matrix_transpose_tricpy('L', 0, A, A);
}
return status;
}
/*
gsl_linalg_cholesky_decomp1()
Perform Cholesky decomposition of a symmetric positive
definite matrix
Inputs: A - (input) symmetric, positive definite matrix
(output) lower triangle contains Cholesky factor
Return: success/error
Notes:
1) Based on algorithm 4.2.1 (Gaxpy Cholesky) of Golub and
Van Loan, Matrix Computations (4th ed).
*/
int
gsl_linalg_cholesky_decomp1 (gsl_matrix * A)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M != N)
{
GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
}
else
{
size_t j;
for (j = 0; j < N; ++j)
{
double ajj;
gsl_vector_view v = gsl_matrix_subcolumn(A, j, j, N - j); /* A(j:n,j) */
if (j > 0)
{
gsl_vector_view w = gsl_matrix_subrow(A, j, 0, j); /* A(j,1:j-1)^T */
gsl_matrix_view m = gsl_matrix_submatrix(A, j, 0, N - j, j); /* A(j:n,1:j-1) */
gsl_blas_dgemv(CblasNoTrans, -1.0, &m.matrix, &w.vector, 1.0, &v.vector);
}
ajj = gsl_matrix_get(A, j, j);
if (ajj <= 0.0)
{
GSL_ERROR("matrix is not positive definite", GSL_EDOM);
}
ajj = sqrt(ajj);
gsl_vector_scale(&v.vector, 1.0 / ajj);
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_cholesky_solve (const gsl_matrix * LLT,
const gsl_vector * b,
gsl_vector * x)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (LLT->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LLT->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
int status;
/* copy x <- b */
gsl_vector_memcpy (x, b);
status = gsl_linalg_cholesky_svx(LLT, x);
return status;
}
}
int
gsl_linalg_cholesky_svx (const gsl_matrix * LLT,
gsl_vector * x)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (LLT->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* solve for c using forward-substitution, L c = b */
gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x);
/* perform back-substitution, L^T x = c */
gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LLT, x);
return GSL_SUCCESS;
}
}
/*
gsl_linalg_cholesky_invert()
Compute the inverse of a symmetric positive definite matrix in
Cholesky form.
Inputs: LLT - matrix in cholesky form on input
A^{-1} = L^{-t} L^{-1} on output
Return: success or error
*/
int
gsl_linalg_cholesky_invert(gsl_matrix * LLT)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else
{
const size_t N = LLT->size1;
size_t i;
gsl_vector_view v1, v2;
/* invert the lower triangle of LLT */
gsl_linalg_tri_lower_invert(LLT);
/*
* The lower triangle of LLT now contains L^{-1}. Now compute
* A^{-1} = L^{-T} L^{-1}
*/
for (i = 0; i < N; ++i)
{
double aii = gsl_matrix_get(LLT, i, i);
if (i < N - 1)
{
double tmp;
v1 = gsl_matrix_subcolumn(LLT, i, i, N - i);
gsl_blas_ddot(&v1.vector, &v1.vector, &tmp);
gsl_matrix_set(LLT, i, i, tmp);
if (i > 0)
{
gsl_matrix_view m = gsl_matrix_submatrix(LLT, i + 1, 0, N - i - 1, i);
v1 = gsl_matrix_subcolumn(LLT, i, i + 1, N - i - 1);
v2 = gsl_matrix_subrow(LLT, i, 0, i);
gsl_blas_dgemv(CblasTrans, 1.0, &m.matrix, &v1.vector, aii, &v2.vector);
}
}
else
{
v1 = gsl_matrix_row(LLT, N - 1);
gsl_blas_dscal(aii, &v1.vector);
}
}
/* copy lower triangle to upper */
gsl_matrix_transpose_tricpy('L', 0, LLT, LLT);
return GSL_SUCCESS;
}
} /* gsl_linalg_cholesky_invert() */
int
gsl_linalg_cholesky_decomp_unit(gsl_matrix * A, gsl_vector * D)
{
const size_t N = A->size1;
size_t i, j;
/* initial Cholesky */
int stat_chol = gsl_linalg_cholesky_decomp1(A);
if(stat_chol == GSL_SUCCESS)
{
/* calculate D from diagonal part of initial Cholesky */
for(i = 0; i < N; ++i)
{
const double C_ii = gsl_matrix_get(A, i, i);
gsl_vector_set(D, i, C_ii*C_ii);
}
/* multiply initial Cholesky by 1/sqrt(D) on the right */
for(i = 0; i < N; ++i)
{
for(j = 0; j < N; ++j)
{
gsl_matrix_set(A, i, j, gsl_matrix_get(A, i, j) / sqrt(gsl_vector_get(D, j)));
}
}
/* Because the initial Cholesky contained both L and transpose(L),
the result of the multiplication is not symmetric anymore;
but the lower triangle _is_ correct. Therefore we reflect
it to the upper triangle and declare victory.
*/
for(i = 0; i < N; ++i)
for(j = i + 1; j < N; ++j)
gsl_matrix_set(A, i, j, gsl_matrix_get(A, j, i));
}
return stat_chol;
}
/*
gsl_linalg_cholesky_scale()
This function computes scale factors diag(S), such that
diag(S) A diag(S)
has a condition number within a factor N of the matrix
with the smallest condition number over all possible
diagonal scalings. See Corollary 7.6 of:
N. J. Higham, Accuracy and Stability of Numerical Algorithms (2nd Edition),
SIAM, 2002.
Inputs: A - symmetric positive definite matrix
S - (output) scale factors, S_i = 1 / sqrt(A_ii)
*/
int
gsl_linalg_cholesky_scale(const gsl_matrix * A, gsl_vector * S)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M != N)
{
GSL_ERROR("A is not a square matrix", GSL_ENOTSQR);
}
else if (N != S->size)
{
GSL_ERROR("S must have length N", GSL_EBADLEN);
}
else
{
size_t i;
/* compute S_i = 1/sqrt(A_{ii}) */
for (i = 0; i < N; ++i)
{
double Aii = gsl_matrix_get(A, i, i);
if (Aii <= 0.0)
gsl_vector_set(S, i, 1.0); /* matrix not positive definite */
else
gsl_vector_set(S, i, 1.0 / sqrt(Aii));
}
return GSL_SUCCESS;
}
}
/*
gsl_linalg_cholesky_scale_apply()
This function applies scale transformation to A:
A <- diag(S) A diag(S)
Inputs: A - (input/output)
on input, symmetric positive definite matrix
on output, diag(S) * A * diag(S) in lower triangle
S - (input) scale factors
*/
int
gsl_linalg_cholesky_scale_apply(gsl_matrix * A, const gsl_vector * S)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M != N)
{
GSL_ERROR("A is not a square matrix", GSL_ENOTSQR);
}
else if (N != S->size)
{
GSL_ERROR("S must have length N", GSL_EBADLEN);
}
else
{
size_t i, j;
/* compute: A <- diag(S) A diag(S) using lower triangle */
for (j = 0; j < N; ++j)
{
double sj = gsl_vector_get(S, j);
for (i = j; i < N; ++i)
{
double si = gsl_vector_get(S, i);
double *Aij = gsl_matrix_ptr(A, i, j);
*Aij *= si * sj;
}
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_cholesky_decomp2(gsl_matrix * A, gsl_vector * S)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M != N)
{
GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
}
else if (N != S->size)
{
GSL_ERROR("S must have length N", GSL_EBADLEN);
}
else
{
int status;
/* compute scaling factors to reduce cond(A) */
status = gsl_linalg_cholesky_scale(A, S);
if (status)
return status;
/* apply scaling factors */
status = gsl_linalg_cholesky_scale_apply(A, S);
if (status)
return status;
/* compute Cholesky decomposition of diag(S) A diag(S) */
status = gsl_linalg_cholesky_decomp1(A);
if (status)
return status;
return GSL_SUCCESS;
}
}
int
gsl_linalg_cholesky_svx2 (const gsl_matrix * LLT,
const gsl_vector * S,
gsl_vector * x)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (LLT->size2 != S->size)
{
GSL_ERROR ("matrix size must match S", GSL_EBADLEN);
}
else if (LLT->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* b~ = diag(S) b */
gsl_vector_mul(x, S);
/* Solve for c using forward-substitution, L c = b~ */
gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x);
/* Perform back-substitution, L^T x~ = c */
gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LLT, x);
/* compute original solution vector x = S x~ */
gsl_vector_mul(x, S);
return GSL_SUCCESS;
}
}
int
gsl_linalg_cholesky_solve2 (const gsl_matrix * LLT,
const gsl_vector * S,
const gsl_vector * b,
gsl_vector * x)
{
if (LLT->size1 != LLT->size2)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (LLT->size1 != S->size)
{
GSL_ERROR ("matrix size must match S size", GSL_EBADLEN);
}
else if (LLT->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LLT->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
int status;
/* Copy x <- b */
gsl_vector_memcpy (x, b);
status = gsl_linalg_cholesky_svx2(LLT, S, x);
return status;
}
}
int
gsl_linalg_cholesky_rcond (const gsl_matrix * LLT, double * rcond,
gsl_vector * work)
{
const size_t M = LLT->size1;
const size_t N = LLT->size2;
if (M != N)
{
GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
}
else if (work->size != 3 * N)
{
GSL_ERROR ("work vector must have length 3*N", GSL_EBADLEN);
}
else
{
int status;
double Anorm = cholesky_norm1(LLT, work); /* ||A||_1 */
double Ainvnorm; /* ||A^{-1}||_1 */
*rcond = 0.0;
/* don't continue if matrix is singular */
if (Anorm == 0.0)
return GSL_SUCCESS;
/* estimate ||A^{-1}||_1 */
status = gsl_linalg_invnorm1(N, cholesky_Ainv, (void *) LLT, &Ainvnorm, work);
if (status)
return status;
if (Ainvnorm != 0.0)
*rcond = (1.0 / Anorm) / Ainvnorm;
return GSL_SUCCESS;
}
}
/* compute 1-norm of original matrix, stored in upper triangle of LLT;
* diagonal entries have to be reconstructed */
static double
cholesky_norm1(const gsl_matrix * LLT, gsl_vector * work)
{
const size_t N = LLT->size1;
double max = 0.0;
size_t i, j;
for (j = 0; j < N; ++j)
{
double sum = 0.0;
gsl_vector_const_view lj = gsl_matrix_const_subrow(LLT, j, 0, j + 1);
double Ajj;
/* compute diagonal (j,j) entry of A */
gsl_blas_ddot(&lj.vector, &lj.vector, &Ajj);
for (i = 0; i < j; ++i)
{
double *wi = gsl_vector_ptr(work, i);
double Aij = gsl_matrix_get(LLT, i, j);
double absAij = fabs(Aij);
sum += absAij;
*wi += absAij;
}
gsl_vector_set(work, j, sum + fabs(Ajj));
}
for (i = 0; i < N; ++i)
{
double wi = gsl_vector_get(work, i);
max = GSL_MAX(max, wi);
}
return max;
}
/* x := A^{-1} x = A^{-t} x, A = L L^T */
static int
cholesky_Ainv(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params)
{
int status;
gsl_matrix * A = (gsl_matrix * ) params;
(void) TransA; /* unused parameter warning */
/* compute L^{-1} x */
status = gsl_blas_dtrsv(CblasLower, CblasNoTrans, CblasNonUnit, A, x);
if (status)
return status;
/* compute L^{-t} x */
status = gsl_blas_dtrsv(CblasLower, CblasTrans, CblasNonUnit, A, x);
if (status)
return status;
return GSL_SUCCESS;
}
|