File: choleskyc.c

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (322 lines) | stat: -rw-r--r-- 9,227 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/* linalg/choleskyc.c
 * 
 * Copyright (C) 2007 Patrick Alken
 * Copyright (C) 2010 Huan Wu (gsl_linalg_complex_cholesky_invert)
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_errno.h>

/*
 * This module contains routines related to the Cholesky decomposition
 * of a complex Hermitian positive definite matrix.
 */

static void cholesky_complex_conj_vector(gsl_vector_complex *v);

/*
gsl_linalg_complex_cholesky_decomp()
  Perform the Cholesky decomposition on a Hermitian positive definite
matrix. See Golub & Van Loan, "Matrix Computations" (3rd ed),
algorithm 4.2.2.

Inputs: A - (input/output) complex postive definite matrix

Return: success or error

The lower triangle of A is overwritten with the Cholesky decomposition
*/

int
gsl_linalg_complex_cholesky_decomp(gsl_matrix_complex *A)
{
  const size_t N = A->size1;
  
  if (N != A->size2)
    {
      GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
    }
  else
    {
      size_t i, j;
      gsl_complex z;
      double ajj;

      for (j = 0; j < N; ++j)
        {
          z = gsl_matrix_complex_get(A, j, j);
          ajj = GSL_REAL(z);

          if (j > 0)
            {
              gsl_vector_complex_const_view aj =
                gsl_matrix_complex_const_subrow(A, j, 0, j);

              gsl_blas_zdotc(&aj.vector, &aj.vector, &z);
              ajj -= GSL_REAL(z);
            }

          if (ajj <= 0.0)
            {
              GSL_ERROR("matrix is not positive definite", GSL_EDOM);
            }

          ajj = sqrt(ajj);
          GSL_SET_COMPLEX(&z, ajj, 0.0);
          gsl_matrix_complex_set(A, j, j, z);

          if (j < N - 1)
            {
              gsl_vector_complex_view av =
                gsl_matrix_complex_subcolumn(A, j, j + 1, N - j - 1);

              if (j > 0)
                {
                  gsl_vector_complex_view aj =
                    gsl_matrix_complex_subrow(A, j, 0, j);
                  gsl_matrix_complex_view am =
                    gsl_matrix_complex_submatrix(A, j + 1, 0, N - j - 1, j);

                  cholesky_complex_conj_vector(&aj.vector);

                  gsl_blas_zgemv(CblasNoTrans,
                                 GSL_COMPLEX_NEGONE,
                                 &am.matrix,
                                 &aj.vector,
                                 GSL_COMPLEX_ONE,
                                 &av.vector);

                  cholesky_complex_conj_vector(&aj.vector);
                }

              gsl_blas_zdscal(1.0 / ajj, &av.vector);
            }
        }

      /* Now store L^H in upper triangle */
      for (i = 1; i < N; ++i)
        {
          for (j = 0; j < i; ++j)
            {
              z = gsl_matrix_complex_get(A, i, j);
              gsl_matrix_complex_set(A, j, i, gsl_complex_conjugate(z));
            }
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_decomp() */

/*
gsl_linalg_complex_cholesky_solve()
  Solve A x = b where A is in cholesky form
*/

int
gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * cholesky,
                                   const gsl_vector_complex * b,
                                   gsl_vector_complex * x)
{
  if (cholesky->size1 != cholesky->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else if (cholesky->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (cholesky->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      gsl_vector_complex_memcpy (x, b);

      /* solve for y using forward-substitution, L y = b */

      gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x);

      /* perform back-substitution, L^H x = y */

      gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x);

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_solve() */

/*
gsl_linalg_complex_cholesky_svx()
  Solve A x = b in place where A is in cholesky form
*/

int
gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * cholesky,
                                 gsl_vector_complex * x)
{
  if (cholesky->size1 != cholesky->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else if (cholesky->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      /* solve for y using forward-substitution, L y = b */

      gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x);

      /* perform back-substitution, L^H x = y */

      gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x);

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_svx() */


/******************************************************************************

gsl_linalg_complex_cholesky_invert()
  Compute the inverse of an Hermitian positive definite matrix in
  Cholesky form.

Inputs: LLT - matrix in cholesky form on input
              A^{-1} = L^{-H} L^{-1} on output

Return: success or error
******************************************************************************/

int
gsl_linalg_complex_cholesky_invert(gsl_matrix_complex * LLT)
{
  if (LLT->size1 != LLT->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else
    {
      size_t N = LLT->size1;
      size_t i, j;
      gsl_vector_complex_view v1;

      /* invert the lower triangle of LLT */
      for (i = 0; i < N; ++i)
        {
          double ajj;
          gsl_complex z;

          j = N - i - 1;

          { 
            gsl_complex z0 = gsl_matrix_complex_get(LLT, j, j);
            ajj = 1.0 / GSL_REAL(z0); 
          }

          GSL_SET_COMPLEX(&z, ajj, 0.0);
          gsl_matrix_complex_set(LLT, j, j, z);

          {
            gsl_complex z1 = gsl_matrix_complex_get(LLT, j, j);
            ajj = -GSL_REAL(z1);
          }

          if (j < N - 1)
            {
              gsl_matrix_complex_view m;
              
              m = gsl_matrix_complex_submatrix(LLT, j + 1, j + 1,
                                       N - j - 1, N - j - 1);
              v1 = gsl_matrix_complex_subcolumn(LLT, j, j + 1, N - j - 1);

              gsl_blas_ztrmv(CblasLower, CblasNoTrans, CblasNonUnit,
                             &m.matrix, &v1.vector);

              gsl_blas_zdscal(ajj, &v1.vector);
            }
        } /* for (i = 0; i < N; ++i) */

      /*
       * The lower triangle of LLT now contains L^{-1}. Now compute
       * A^{-1} = L^{-H} L^{-1}
       *
       * The (ij) element of A^{-1} is column i of conj(L^{-1}) dotted into
       * column j of L^{-1}
       */

      for (i = 0; i < N; ++i)
        {
          gsl_complex sum;
          for (j = i + 1; j < N; ++j)
            {
              gsl_vector_complex_view v2;
              v1 = gsl_matrix_complex_subcolumn(LLT, i, j, N - j);
              v2 = gsl_matrix_complex_subcolumn(LLT, j, j, N - j);

              /* compute Ainv[i,j] = sum_k{conj(Linv[k,i]) * Linv[k,j]} */
              gsl_blas_zdotc(&v1.vector, &v2.vector, &sum);

              /* store in upper triangle */
              gsl_matrix_complex_set(LLT, i, j, sum);
            }

          /* now compute the diagonal element */
          v1 = gsl_matrix_complex_subcolumn(LLT, i, i, N - i);
          gsl_blas_zdotc(&v1.vector, &v1.vector, &sum);
          gsl_matrix_complex_set(LLT, i, i, sum);
        }

      /* copy the Hermitian upper triangle to the lower triangle */

      for (j = 1; j < N; j++)
        {
          for (i = 0; i < j; i++)
            {
              gsl_complex z = gsl_matrix_complex_get(LLT, i, j);
              gsl_matrix_complex_set(LLT, j, i, gsl_complex_conjugate(z));
            }
        } 

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_invert() */


/********************************************
 *           INTERNAL ROUTINES              *
 ********************************************/

static void
cholesky_complex_conj_vector(gsl_vector_complex *v)
{
  size_t i;

  for (i = 0; i < v->size; ++i)
    {
      gsl_complex z = gsl_vector_complex_get(v, i);
      gsl_vector_complex_set(v, i, gsl_complex_conjugate(z));
    }
} /* cholesky_complex_conj_vector() */