File: luc.c

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (370 lines) | stat: -rw-r--r-- 9,439 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/* linalg/luc.c
 * 
 * Copyright (C) 2001, 2007, 2009 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_permute_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_complex_math.h>

#include <gsl/gsl_linalg.h>

static int singular (const gsl_matrix_complex * LU);

/* Factorise a general N x N complex matrix A into,
 *
 *   P A = L U
 *
 * where P is a permutation matrix, L is unit lower triangular and U
 * is upper triangular.
 *
 * L is stored in the strict lower triangular part of the input
 * matrix. The diagonal elements of L are unity and are not stored.
 *
 * U is stored in the diagonal and upper triangular part of the
 * input matrix.  
 * 
 * P is stored in the permutation p. Column j of P is column k of the
 * identity matrix, where k = permutation->data[j]
 *
 * signum gives the sign of the permutation, (-1)^n, where n is the
 * number of interchanges in the permutation. 
 *
 * See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss
 * Elimination with Partial Pivoting).
 */

int
gsl_linalg_complex_LU_decomp (gsl_matrix_complex * A, gsl_permutation * p, int *signum)
{
  if (A->size1 != A->size2)
    {
      GSL_ERROR ("LU decomposition requires square matrix", GSL_ENOTSQR);
    }
  else if (p->size != A->size1)
    {
      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;
      size_t i, j, k;

      *signum = 1;
      gsl_permutation_init (p);

      for (j = 0; j < N - 1; j++)
        {
          /* Find maximum in the j-th column */

          gsl_complex ajj = gsl_matrix_complex_get (A, j, j);
          double max = gsl_complex_abs (ajj);
          size_t i_pivot = j;

          for (i = j + 1; i < N; i++)
            {
              gsl_complex aij = gsl_matrix_complex_get (A, i, j);
              double ai = gsl_complex_abs (aij);

              if (ai > max)
                {
                  max = ai;
                  i_pivot = i;
                }
            }

          if (i_pivot != j)
            {
              gsl_matrix_complex_swap_rows (A, j, i_pivot);
              gsl_permutation_swap (p, j, i_pivot);
              *signum = -(*signum);
            }

          ajj = gsl_matrix_complex_get (A, j, j);

          if (!(GSL_REAL(ajj) == 0.0 && GSL_IMAG(ajj) == 0.0))
            {
              for (i = j + 1; i < N; i++)
                {
                  gsl_complex aij_orig = gsl_matrix_complex_get (A, i, j);
                  gsl_complex aij = gsl_complex_div (aij_orig, ajj);
                  gsl_matrix_complex_set (A, i, j, aij);

                  for (k = j + 1; k < N; k++)
                    {
                      gsl_complex aik = gsl_matrix_complex_get (A, i, k);
                      gsl_complex ajk = gsl_matrix_complex_get (A, j, k);
                      
                      /* aik = aik - aij * ajk */

                      gsl_complex aijajk = gsl_complex_mul (aij, ajk);
                      gsl_complex aik_new = gsl_complex_sub (aik, aijajk);

                      gsl_matrix_complex_set (A, i, k, aik_new);
                    }
                }
            }
        }
      
      return GSL_SUCCESS;
    }
}

int
gsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x)
{
  if (LU->size1 != LU->size2)
    {
      GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
    }
  else if (LU->size1 != p->size)
    {
      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
    }
  else if (LU->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (LU->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (singular (LU)) 
    {
      GSL_ERROR ("matrix is singular", GSL_EDOM);
    }
  else
    {
      int status;

      /* Copy x <- b */

      gsl_vector_complex_memcpy (x, b);

      /* Solve for x */

      status = gsl_linalg_complex_LU_svx (LU, p, x);

      return status;
    }
}


int
gsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_vector_complex * x)
{
  if (LU->size1 != LU->size2)
    {
      GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
    }
  else if (LU->size1 != p->size)
    {
      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
    }
  else if (LU->size1 != x->size)
    {
      GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN);
    }
  else if (singular (LU)) 
    {
      GSL_ERROR ("matrix is singular", GSL_EDOM);
    }
  else
    {
      /* Apply permutation to RHS */

      gsl_permute_vector_complex (p, x);

      /* Solve for c using forward-substitution, L c = P b */

      gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x);

      /* Perform back-substitution, U x = c */

      gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x);

      return GSL_SUCCESS;
    }
}


int
gsl_linalg_complex_LU_refine (const gsl_matrix_complex * A, const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * work)
{
  if (A->size1 != A->size2)
    {
      GSL_ERROR ("matrix a must be square", GSL_ENOTSQR);
    }
  if (LU->size1 != LU->size2)
    {
      GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
    }
  else if (A->size1 != LU->size2)
    {
      GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR);
    }
  else if (LU->size1 != p->size)
    {
      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
    }
  else if (LU->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (LU->size1 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (LU->size1 != work->size)
    {
      GSL_ERROR ("matrix size must match workspace size", GSL_EBADLEN);
    }
  else if (singular (LU)) 
    {
      GSL_ERROR ("matrix is singular", GSL_EDOM);
    }
  else
    {
      int status;

      /* Compute residual = (A * x  - b) */

      gsl_vector_complex_memcpy (work, b);

      {
        gsl_complex one = GSL_COMPLEX_ONE;
        gsl_complex negone = GSL_COMPLEX_NEGONE;
        gsl_blas_zgemv (CblasNoTrans, one, A, x, negone, work);
      }

      /* Find correction, delta = - (A^-1) * residual, and apply it */

      status = gsl_linalg_complex_LU_svx (LU, p, work);

      {
        gsl_complex negone= GSL_COMPLEX_NEGONE;
        gsl_blas_zaxpy (negone, work, x);
      }

      return status;
    }
}

int
gsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_matrix_complex * inverse)
{
  size_t i, n = LU->size1;

  int status = GSL_SUCCESS;

  gsl_matrix_complex_set_identity (inverse);

  for (i = 0; i < n; i++)
    {
      gsl_vector_complex_view c = gsl_matrix_complex_column (inverse, i);
      int status_i = gsl_linalg_complex_LU_svx (LU, p, &(c.vector));

      if (status_i)
        status = status_i;
    }

  return status;
}

gsl_complex
gsl_linalg_complex_LU_det (gsl_matrix_complex * LU, int signum)
{
  size_t i, n = LU->size1;

  gsl_complex det = gsl_complex_rect((double) signum, 0.0);

  for (i = 0; i < n; i++)
    {
      gsl_complex zi = gsl_matrix_complex_get (LU, i, i);
      det = gsl_complex_mul (det, zi);
    }

  return det;
}


double
gsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU)
{
  size_t i, n = LU->size1;

  double lndet = 0.0;

  for (i = 0; i < n; i++)
    {
      gsl_complex z = gsl_matrix_complex_get (LU, i, i);
      lndet += log (gsl_complex_abs (z));
    }

  return lndet;
}


gsl_complex
gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU, int signum)
{
  size_t i, n = LU->size1;

  gsl_complex phase = gsl_complex_rect((double) signum, 0.0);

  for (i = 0; i < n; i++)
    {
      gsl_complex z = gsl_matrix_complex_get (LU, i, i);
      
      double r = gsl_complex_abs(z);

      if (r == 0)
        {
          phase = gsl_complex_rect(0.0, 0.0);
          break;
        }
      else
        {
          z = gsl_complex_div_real(z, r);
          phase = gsl_complex_mul(phase, z);
        }
    }

  return phase;
}

static int
singular (const gsl_matrix_complex * LU)
{
  size_t i, n = LU->size1;

  for (i = 0; i < n; i++)
    {
      gsl_complex u = gsl_matrix_complex_get (LU, i, i);
      if (GSL_REAL(u) == 0 && GSL_IMAG(u) == 0) return 1;
    }
 
 return 0;
}