1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/* monte/plain.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2009 Michael Booth
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Plain Monte-Carlo. */
/* Author: MJB */
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_monte_plain.h>
int
gsl_monte_plain_integrate (const gsl_monte_function * f,
const double xl[], const double xu[],
const size_t dim,
const size_t calls,
gsl_rng * r,
gsl_monte_plain_state * state,
double *result, double *abserr)
{
double vol, m = 0, q = 0;
double *x = state->x;
size_t n, i;
if (dim != state->dim)
{
GSL_ERROR ("number of dimensions must match allocated size", GSL_EINVAL);
}
for (i = 0; i < dim; i++)
{
if (xu[i] <= xl[i])
{
GSL_ERROR ("xu must be greater than xl", GSL_EINVAL);
}
if (xu[i] - xl[i] > GSL_DBL_MAX)
{
GSL_ERROR ("Range of integration is too large, please rescale",
GSL_EINVAL);
}
}
/* Compute the volume of the region */
vol = 1;
for (i = 0; i < dim; i++)
{
vol *= xu[i] - xl[i];
}
for (n = 0; n < calls; n++)
{
/* Choose a random point in the integration region */
for (i = 0; i < dim; i++)
{
x[i] = xl[i] + gsl_rng_uniform_pos (r) * (xu[i] - xl[i]);
}
{
double fval = GSL_MONTE_FN_EVAL (f, x);
/* recurrence for mean and variance */
double d = fval - m;
m += d / (n + 1.0);
q += d * d * (n / (n + 1.0));
}
}
*result = vol * m;
if (calls < 2)
{
*abserr = GSL_POSINF;
}
else
{
*abserr = vol * sqrt (q / (calls * (calls - 1.0)));
}
return GSL_SUCCESS;
}
gsl_monte_plain_state *
gsl_monte_plain_alloc (size_t dim)
{
gsl_monte_plain_state *s =
(gsl_monte_plain_state *) malloc (sizeof (gsl_monte_plain_state));
if (s == 0)
{
GSL_ERROR_VAL ("failed to allocate space for state struct",
GSL_ENOMEM, 0);
}
s->x = (double *) malloc (dim * sizeof (double));
if (s->x == 0)
{
free (s);
GSL_ERROR_VAL ("failed to allocate space for working vector",
GSL_ENOMEM, 0);
}
s->dim = dim;
return s;
}
/* Set some default values and whatever */
int
gsl_monte_plain_init (gsl_monte_plain_state * s)
{
size_t i;
for (i = 0; i < s->dim; i++)
{
s->x[i] = 0.0;
}
return GSL_SUCCESS;
}
void
gsl_monte_plain_free (gsl_monte_plain_state * s)
{
RETURN_IF_NULL (s);
free (s->x);
free (s);
}
|