File: fdfsolver.c

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (380 lines) | stat: -rw-r--r-- 9,452 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* multifit/fdfsolver.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_multifit_nlin.h>

gsl_multifit_fdfsolver *
gsl_multifit_fdfsolver_alloc (const gsl_multifit_fdfsolver_type * T, 
                              size_t n, size_t p)
{
  int status;

  gsl_multifit_fdfsolver * s;

  if (n < p)
    {
      GSL_ERROR_VAL ("insufficient data points, n < p", GSL_EINVAL, 0);
    }

  s = (gsl_multifit_fdfsolver *) calloc (1, sizeof (gsl_multifit_fdfsolver));
  if (s == 0)
    {
      GSL_ERROR_VAL ("failed to allocate space for multifit solver struct",
                     GSL_ENOMEM, 0);
    }

  s->x = gsl_vector_calloc (p);

  if (s->x == 0) 
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
    }

  s->f = gsl_vector_calloc (n);

  if (s->f == 0) 
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to allocate space for f", GSL_ENOMEM, 0);
    }

  s->dx = gsl_vector_calloc (p);

  if (s->dx == 0) 
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0);
    }

  s->g = gsl_vector_alloc (p);

  if (s->g == 0) 
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to allocate space for g", GSL_ENOMEM, 0);
    }

  s->sqrt_wts = gsl_vector_calloc (n);

  if (s->sqrt_wts == 0) 
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to allocate space for sqrt_wts", GSL_ENOMEM, 0);
    }

  s->state = calloc (1, T->size);

  if (s->state == 0)
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to allocate space for multifit solver state",
                     GSL_ENOMEM, 0);
    }

  s->type = T ;

  status = (s->type->alloc)(s->state, n, p);

  if (status != GSL_SUCCESS)
    {
      gsl_multifit_fdfsolver_free (s);
      GSL_ERROR_VAL ("failed to set solver", status, 0);
    }

  s->fdf = NULL;
  
  s->niter = 0;

  return s;
}

int
gsl_multifit_fdfsolver_set (gsl_multifit_fdfsolver * s, 
                            gsl_multifit_function_fdf * f, 
                            const gsl_vector * x)
{
  return gsl_multifit_fdfsolver_wset(s, f, x, NULL);
}

int
gsl_multifit_fdfsolver_wset (gsl_multifit_fdfsolver * s, 
                             gsl_multifit_function_fdf * f, 
                             const gsl_vector * x,
                             const gsl_vector * wts)
{
  const size_t n = s->f->size;

  if (n != f->n)
    {
      GSL_ERROR ("function size does not match solver", GSL_EBADLEN);
    }
  else if (s->x->size != x->size)
    {
      GSL_ERROR ("vector length does not match solver", GSL_EBADLEN);
    }
  else if (wts != NULL && n != wts->size)
    {
      GSL_ERROR ("weight vector length does not match solver", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      s->fdf = f;
      gsl_vector_memcpy(s->x, x);
      s->niter = 0;

      if (wts)
        {
          for (i = 0; i < n; ++i)
            {
              double wi = gsl_vector_get(wts, i);
              gsl_vector_set(s->sqrt_wts, i, sqrt(wi));
            }
        }
      else
        gsl_vector_set_all(s->sqrt_wts, 1.0);
  
      return (s->type->set) (s->state, s->sqrt_wts, s->fdf, s->x, s->f, s->dx);
    }
}

int
gsl_multifit_fdfsolver_iterate (gsl_multifit_fdfsolver * s)
{
  int status =
    (s->type->iterate) (s->state, s->sqrt_wts, s->fdf, s->x, s->f, s->dx);

  s->niter++;

  return status;
}

/*
gsl_multifit_fdfsolver_driver()
  Iterate the nonlinear least squares solver until completion

Inputs: s - fdfsolver
        maxiter - maximum iterations to allow
        xtol    - tolerance in step x
        gtol    - tolerance in gradient
        ftol    - tolerance in ||f||
        info    - (output) info flag on why iteration terminated
                  1 = stopped due to small step size ||dx|
                  2 = stopped due to small gradient
                  3 = stopped due to small change in f
                  GSL_ETOLX = ||dx|| has converged to within machine
                              precision (and xtol is too small)
                  GSL_ETOLG = ||g||_inf is smaller than machine
                              precision (gtol is too small)
                  GSL_ETOLF = change in ||f|| is smaller than machine
                              precision (ftol is too small)

Return: GSL_SUCCESS if converged, GSL_MAXITER if maxiter exceeded without
converging
*/
int
gsl_multifit_fdfsolver_driver (gsl_multifit_fdfsolver * s,
                               const size_t maxiter,
                               const double xtol,
                               const double gtol,
                               const double ftol,
                               int *info)
{
  int status;
  size_t iter = 0;

  do
    {
      status = gsl_multifit_fdfsolver_iterate (s);

      /*
       * if status is GSL_ENOPROG or GSL_SUCCESS, continue iterating,
       * otherwise the method has converged with a GSL_ETOLx flag
       */
      if (status != GSL_SUCCESS && status != GSL_ENOPROG)
        break;

      /* test for convergence */
      status = gsl_multifit_fdfsolver_test(s, xtol, gtol, ftol, info);
    }
  while (status == GSL_CONTINUE && ++iter < maxiter);

  /*
   * the following error codes mean that the solution has converged
   * to within machine precision, so record the error code in info
   * and return success
   */
  if (status == GSL_ETOLF || status == GSL_ETOLX || status == GSL_ETOLG)
    {
      *info = status;
      status = GSL_SUCCESS;
    }

  /* check if max iterations reached */
  if (iter >= maxiter && status != GSL_SUCCESS)
    status = GSL_EMAXITER;

  return status;
} /* gsl_multifit_fdfsolver_driver() */

int
gsl_multifit_fdfsolver_jac (gsl_multifit_fdfsolver * s, gsl_matrix * J)
{
  const size_t n = s->f->size;
  const size_t p = s->x->size;

  if (n != J->size1 || p != J->size2)
    {
      GSL_ERROR ("Jacobian dimensions do not match solver", GSL_EBADLEN);
    }
  else
    {
      return (s->type->jac) (s->state, J);
    }
} /* gsl_multifit_fdfsolver_jac() */

void
gsl_multifit_fdfsolver_free (gsl_multifit_fdfsolver * s)
{
  RETURN_IF_NULL (s);

  if (s->state)
    {
      (s->type->free) (s->state);
      free (s->state);
    }

  if (s->dx)
    gsl_vector_free (s->dx);

  if (s->x)
    gsl_vector_free (s->x);

  if (s->f)
    gsl_vector_free (s->f);

  if (s->sqrt_wts)
    gsl_vector_free (s->sqrt_wts);

  if (s->g)
    gsl_vector_free (s->g);

  free (s);
}

const char *
gsl_multifit_fdfsolver_name (const gsl_multifit_fdfsolver * s)
{
  return s->type->name;
}

gsl_vector *
gsl_multifit_fdfsolver_position (const gsl_multifit_fdfsolver * s)
{
  return s->x;
}

gsl_vector *
gsl_multifit_fdfsolver_residual (const gsl_multifit_fdfsolver * s)
{
  return s->f;
}

size_t
gsl_multifit_fdfsolver_niter (const gsl_multifit_fdfsolver * s)
{
  return s->niter;
}

/*
gsl_multifit_eval_wf()
  Compute residual vector y with user callback function, and apply
weighting transform if given:

y~ = sqrt(W) y

Inputs: fdf  - callback function
        x    - model parameters
        swts - weight matrix sqrt(W) = sqrt(diag(w1,w2,...,wn))
               set to NULL for unweighted fit
        y    - (output) (weighted) residual vector
               y_i = sqrt(w_i) f_i where f_i is unweighted residual
*/

int
gsl_multifit_eval_wf(gsl_multifit_function_fdf *fdf, const gsl_vector *x,
                     const gsl_vector *swts, gsl_vector *y)
{
  int s = ((*((fdf)->f)) (x, fdf->params, y));
  ++(fdf->nevalf);

  /* y <- sqrt(W) y */
  if (swts)
    gsl_vector_mul(y, swts);

  return s;
}

/*
gsl_multifit_eval_wdf()
  Compute Jacobian matrix J with user callback function, and apply
weighting transform if given:

J~ = sqrt(W) J

Inputs: fdf  - callback function
        x    - model parameters
        swts - weight matrix W = diag(w1,w2,...,wn)
               set to NULL for unweighted fit
        dy   - (output) (weighted) Jacobian matrix
               dy = sqrt(W) dy where dy is unweighted Jacobian
*/

int
gsl_multifit_eval_wdf(gsl_multifit_function_fdf *fdf, const gsl_vector *x,
                      const gsl_vector *swts, gsl_matrix *dy)
{
  int status = ((*((fdf)->df)) (x, fdf->params, dy));

  ++(fdf->nevaldf);

  /* J <- sqrt(W) J */
  if (swts)
    {
      const size_t n = swts->size;
      size_t i;

      for (i = 0; i < n; ++i)
        {
          double swi = gsl_vector_get(swts, i);
          gsl_vector_view v = gsl_matrix_row(dy, i);

          gsl_vector_scale(&v.vector, swi);
        }
    }

  return status;
}