File: normal.c

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (513 lines) | stat: -rw-r--r-- 12,779 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* normal.c
 * 
 * Copyright (C) 2015, 2016 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_multifit.h>
#include <gsl/gsl_multilarge.h>
#include <gsl/gsl_permutation.h>

typedef struct
{
  size_t p;              /* number of columns of LS matrix */
  gsl_matrix *ATA;       /* A^T A, p-by-p */
  gsl_vector *ATb;       /* A^T b, p-by-1 */
  double normb;          /* || b || */
  gsl_matrix *work_ATA;  /* workspace for chol(ATA), p-by-p */
  gsl_permutation *perm; /* permutation vector */
  gsl_vector *workp;     /* workspace size p */
  gsl_vector *work3p;    /* workspace size 3*p */
  gsl_vector *D;         /* scale factors for ATA, size p */
  gsl_vector *c;         /* solution vector for L-curve */
  int eigen;             /* 1 if eigenvalues computed */
  double eval_min;       /* minimum eigenvalue */
  double eval_max;       /* maximum eigenvalue */
  gsl_eigen_symm_workspace *eigen_p;
} normal_state_t;

static void *normal_alloc(const size_t p);
static void normal_free(void *vstate);
static int normal_reset(void *vstate);
static int normal_accumulate(gsl_matrix * A, gsl_vector * b,
                             void * vstate);
static int normal_solve(const double lambda, gsl_vector * x,
                        double * rnorm, double * snorm,
                        void * vstate);
static int normal_rcond(double * rcond, void * vstate);
static int normal_lcurve(gsl_vector * reg_param, gsl_vector * rho,
                         gsl_vector * eta, void * vstate);
static int normal_solve_system(const double lambda, gsl_vector * x,
                               normal_state_t *state);
static int normal_solve_cholesky(gsl_matrix * ATA, const gsl_vector * ATb,
                                 gsl_vector * x, normal_state_t *state);
static int normal_calc_norms(const gsl_vector *x, double *rnorm,
                             double *snorm, normal_state_t *state);
static int normal_eigen(normal_state_t *state);

/*
normal_alloc()
  Allocate workspace for solving large linear least squares
problems using the normal equations approach

Inputs: p    - number of columns of LS matrix

Return: pointer to workspace
*/

static void *
normal_alloc(const size_t p)
{
  normal_state_t *state;

  if (p == 0)
    {
      GSL_ERROR_NULL("p must be a positive integer",
                     GSL_EINVAL);
    }

  state = calloc(1, sizeof(normal_state_t));
  if (!state)
    {
      GSL_ERROR_NULL("failed to allocate normal state", GSL_ENOMEM);
    }

  state->p = p;

  state->ATA = gsl_matrix_alloc(p, p);
  if (state->ATA == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate ATA matrix", GSL_ENOMEM);
    }

  state->work_ATA = gsl_matrix_alloc(p, p);
  if (state->work_ATA == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate temporary ATA matrix", GSL_ENOMEM);
    }

  state->ATb = gsl_vector_alloc(p);
  if (state->ATb == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate ATb vector", GSL_ENOMEM);
    }

  state->perm = gsl_permutation_alloc(p);
  if (state->perm == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate perm", GSL_ENOMEM);
    }

  state->D = gsl_vector_alloc(p);
  if (state->D == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate D vector", GSL_ENOMEM);
    }

  state->workp = gsl_vector_alloc(p);
  if (state->workp == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate temporary ATb vector", GSL_ENOMEM);
    }

  state->work3p = gsl_vector_alloc(3 * p);
  if (state->work3p == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate work3p", GSL_ENOMEM);
    }

  state->c = gsl_vector_alloc(p);
  if (state->c == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate c vector", GSL_ENOMEM);
    }

  state->eigen_p = gsl_eigen_symm_alloc(p);
  if (state->eigen_p == NULL)
    {
      normal_free(state);
      GSL_ERROR_NULL("failed to allocate eigen workspace", GSL_ENOMEM);
    }

  normal_reset(state);

  return state;
}

static void
normal_free(void *vstate)
{
  normal_state_t *state = (normal_state_t *) vstate;

  if (state->ATA)
    gsl_matrix_free(state->ATA);

  if (state->work_ATA)
    gsl_matrix_free(state->work_ATA);

  if (state->ATb)
    gsl_vector_free(state->ATb);

  if (state->perm)
    gsl_permutation_free(state->perm);

  if (state->D)
    gsl_vector_free(state->D);

  if (state->workp)
    gsl_vector_free(state->workp);

  if (state->work3p)
    gsl_vector_free(state->work3p);

  if (state->c)
    gsl_vector_free(state->c);

  if (state->eigen_p)
    gsl_eigen_symm_free(state->eigen_p);

  free(state);
}

static int
normal_reset(void *vstate)
{
  normal_state_t *state = (normal_state_t *) vstate;

  gsl_matrix_set_zero(state->ATA);
  gsl_vector_set_zero(state->ATb);
  state->normb = 0.0;
  state->eigen = 0;
  state->eval_min = 0.0;
  state->eval_max = 0.0;

  return GSL_SUCCESS;
}

/*
normal_accumulate()
  Add a new block of rows to the normal equations system

Inputs: A      - new block of rows, n-by-p
        b      - new rhs vector n-by-1
        vstate - workspace

Return: success/error
*/

static int
normal_accumulate(gsl_matrix * A, gsl_vector * b, void * vstate)
{
  normal_state_t *state = (normal_state_t *) vstate;
  const size_t n = A->size1;

  if (A->size2 != state->p)
    {
      GSL_ERROR("columns of A do not match workspace", GSL_EBADLEN);
    }
  else if (n != b->size)
    {
      GSL_ERROR("A and b have different numbers of rows", GSL_EBADLEN);
    }
  else
    {
      int s;

      /* ATA += A^T A, using only the lower half of the matrix */
      s = gsl_blas_dsyrk(CblasLower, CblasTrans, 1.0, A, 1.0, state->ATA);
      if (s)
        return s;

      /* ATb += A^T b */
      s = gsl_blas_dgemv(CblasTrans, 1.0, A, b, 1.0, state->ATb);
      if (s)
        return s;

      /* update || b || */
      state->normb = gsl_hypot(state->normb, gsl_blas_dnrm2(b));

      return GSL_SUCCESS;
    }
}

/*
normal_solve()
  Solve normal equations system:

(A^T A + \lambda^2 I) x = A^T b

using Cholesky decomposition

Inputs: lambda - regularization parameter
        x      - (output) solution vector p-by-1
        rnorm  - (output) residual norm ||b - A x||
        snorm  - (output) solution norm ||x||
        vstate - workspace

Return: success/error
*/

static int
normal_solve(const double lambda, gsl_vector * x,
             double * rnorm, double * snorm,
             void * vstate)
{
  normal_state_t *state = (normal_state_t *) vstate;

  if (x->size != state->p)
    {
      GSL_ERROR("solution vector does not match workspace", GSL_EBADLEN);
    }
  else
    {
      int status;

      /* solve system (A^T A) x = A^T b */
      status = normal_solve_system(lambda, x, state);
      if (status)
        {
          GSL_ERROR("failed to solve normal equations", status);
        }

      /* compute residual norm ||y - X c|| and solution norm ||x|| */
      normal_calc_norms(x, rnorm, snorm, state);

      return GSL_SUCCESS;
    }
}

static int
normal_rcond(double * rcond, void * vstate)
{
  normal_state_t *state = (normal_state_t *) vstate;
  int status = GSL_SUCCESS;
  double rcond_ATA;

  status = gsl_linalg_pcholesky_rcond(state->work_ATA, state->perm, &rcond_ATA, state->work3p);
  if (status == GSL_SUCCESS)
    *rcond = sqrt(rcond_ATA);

  return status;
}

/*
normal_lcurve()
  Compute L-curve of least squares system

Inputs: reg_param - (output) vector of regularization parameters
        rho       - (output) vector of residual norms
        eta       - (output) vector of solution norms
        vstate    - workspace

Return: success/error
*/

static int
normal_lcurve(gsl_vector * reg_param, gsl_vector * rho,
              gsl_vector * eta, void * vstate)
{
  normal_state_t *state = (normal_state_t *) vstate;
  int status;
  double smin, smax; /* minimum/maximum singular values */
  size_t i;

  if (state->eigen == 0)
    {
      status = normal_eigen(state);
      if (status)
        return status;
    }

  if (state->eval_max < 0.0)
    {
      GSL_ERROR("matrix is not positive definite", GSL_EDOM);
    }

  /* compute singular values which are sqrts of eigenvalues */
  smax = sqrt(state->eval_max);
  if (state->eval_min > 0.0)
    smin = sqrt(state->eval_min);
  else
    smin = 0.0;

  /* compute vector of regularization parameters */
  gsl_multifit_linear_lreg(smin, smax, reg_param);

  /* solve normal equations for each regularization parameter */
  for (i = 0; i < reg_param->size; ++i)
    {
      double lambda = gsl_vector_get(reg_param, i);
      double rnorm, snorm;

      status = normal_solve_system(lambda, state->c, state);
      if (status)
        return status;

      /* compute ||y - X c|| and ||c|| */
      normal_calc_norms(state->c, &rnorm, &snorm, state);

      gsl_vector_set(rho, i, rnorm);
      gsl_vector_set(eta, i, snorm);
    }

  return GSL_SUCCESS;
}

/*
normal_solve_system()
  Compute solution to normal equations:

(A^T A + lambda^2*I) x = A^T b

using LDL decomposition.

Inputs: x     - (output) solution vector
        state - workspace

Return: success/error
*/

static int
normal_solve_system(const double lambda, gsl_vector * x, normal_state_t *state)
{
  int status;
  const double lambda_sq = lambda * lambda;
  gsl_vector_view d = gsl_matrix_diagonal(state->work_ATA);

  /* copy ATA matrix to temporary workspace and regularize */
  gsl_matrix_tricpy('L', 1, state->work_ATA, state->ATA);
  gsl_vector_add_constant(&d.vector, lambda_sq);

  /* solve with LDL decomposition */
  status = normal_solve_cholesky(state->work_ATA, state->ATb, x, state);
  if (status)
    return status;

  return status;
}

static int
normal_solve_cholesky(gsl_matrix * ATA, const gsl_vector * ATb,
                      gsl_vector * x, normal_state_t *state)
{
  int status;

  status = gsl_linalg_pcholesky_decomp2(ATA, state->perm, state->D);
  if (status)
    return status;

  status = gsl_linalg_pcholesky_solve2(ATA, state->perm, state->D, ATb, x);
  if (status)
    return status;

  return GSL_SUCCESS;
}

/*
normal_calc_norms()
  Compute residual norm ||y - X c|| and solution
norm ||c||

Inputs: x     - solution vector
        rnorm - (output) residual norm ||y - X c||
        snorm - (output) solution norm ||c||
        state - workspace
*/

static int
normal_calc_norms(const gsl_vector *x, double *rnorm,
                  double *snorm, normal_state_t *state)
{
  double r2;

  /* compute solution norm ||x|| */
  *snorm = gsl_blas_dnrm2(x);

  /* compute residual norm ||b - Ax|| */

  /* compute: A^T A x - 2 A^T b */
  gsl_vector_memcpy(state->workp, state->ATb);
  gsl_blas_dsymv(CblasLower, 1.0, state->ATA, x, -2.0, state->workp);

  /* compute: x^T A^T A x - 2 x^T A^T b */
  gsl_blas_ddot(x, state->workp, &r2);

  /* add b^T b */
  r2 += state->normb * state->normb;

  *rnorm = sqrt(r2);

  return GSL_SUCCESS;
}

/*
normal_eigen()
  Compute eigenvalues of A^T A matrix, which
are stored in state->workp on output. Also,
state->eval_min and state->eval_max are set
to the minimum/maximum eigenvalues
*/

static int
normal_eigen(normal_state_t *state)
{
  int status;

  /* copy lower triangle of ATA to temporary workspace */
  gsl_matrix_tricpy('L', 1, state->work_ATA, state->ATA);

  /* compute eigenvalues of ATA */
  status = gsl_eigen_symm(state->work_ATA, state->workp, state->eigen_p);
  if (status)
    return status;

  gsl_vector_minmax(state->workp, &state->eval_min, &state->eval_max);

  state->eigen = 1;

  return GSL_SUCCESS;
}

static const gsl_multilarge_linear_type normal_type =
{
  "normal",
  normal_alloc,
  normal_reset,
  normal_accumulate,
  normal_solve,
  normal_rcond,
  normal_lcurve,
  normal_free
};

const gsl_multilarge_linear_type * gsl_multilarge_linear_normal =
  &normal_type;