1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
/* multilarge_nlinear/fdf.c
*
* Copyright (C) 2015, 2016 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multilarge_nlinear.h>
gsl_multilarge_nlinear_workspace *
gsl_multilarge_nlinear_alloc (const gsl_multilarge_nlinear_type * T,
const gsl_multilarge_nlinear_parameters * params,
const size_t n, const size_t p)
{
gsl_multilarge_nlinear_workspace * w;
if (n < p)
{
GSL_ERROR_VAL ("insufficient data points, n < p", GSL_EINVAL, 0);
}
w = calloc (1, sizeof (gsl_multilarge_nlinear_workspace));
if (w == 0)
{
GSL_ERROR_VAL ("failed to allocate space for workspace",
GSL_ENOMEM, 0);
}
w->n = n;
w->p = p;
w->type = T;
w->fdf = NULL;
w->niter = 0;
w->params = *params;
/* the cgst method uses its own built-in linear solver */
if (w->params.trs == gsl_multilarge_nlinear_trs_cgst)
{
w->params.solver = gsl_multilarge_nlinear_solver_none;
}
w->x = gsl_vector_calloc (p);
if (w->x == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
}
w->f = gsl_vector_calloc (n);
if (w->f == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for f", GSL_ENOMEM, 0);
}
w->dx = gsl_vector_calloc (p);
if (w->dx == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0);
}
w->g = gsl_vector_alloc (p);
if (w->g == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for g", GSL_ENOMEM, 0);
}
if (w->params.solver == gsl_multilarge_nlinear_solver_cholesky)
{
w->JTJ = gsl_matrix_alloc (p, p);
if (w->JTJ == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for JTJ", GSL_ENOMEM, 0);
}
}
w->sqrt_wts_work = gsl_vector_calloc (n);
if (w->sqrt_wts_work == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for weights", GSL_ENOMEM, 0);
}
w->state = (T->alloc)(&(w->params), n, p);
if (w->state == 0)
{
gsl_multilarge_nlinear_free (w);
GSL_ERROR_VAL ("failed to allocate space for state", GSL_ENOMEM, 0);
}
return w;
}
void
gsl_multilarge_nlinear_free (gsl_multilarge_nlinear_workspace * w)
{
RETURN_IF_NULL (w);
if (w->state)
(w->type->free) (w->state);
if (w->dx)
gsl_vector_free (w->dx);
if (w->x)
gsl_vector_free (w->x);
if (w->f)
gsl_vector_free (w->f);
if (w->sqrt_wts_work)
gsl_vector_free (w->sqrt_wts_work);
if (w->g)
gsl_vector_free (w->g);
if (w->JTJ)
gsl_matrix_free (w->JTJ);
free (w);
}
gsl_multilarge_nlinear_parameters
gsl_multilarge_nlinear_default_parameters(void)
{
gsl_multilarge_nlinear_parameters params;
params.trs = gsl_multilarge_nlinear_trs_lm;
params.scale = gsl_multilarge_nlinear_scale_more;
params.solver = gsl_multilarge_nlinear_solver_cholesky;
params.fdtype = GSL_MULTILARGE_NLINEAR_FWDIFF;
params.factor_up = 3.0;
params.factor_down = 2.0;
params.avmax = 0.75;
params.h_df = GSL_SQRT_DBL_EPSILON;
params.h_fvv = 0.01;
params.max_iter = 0;
params.tol = 1.0e-6;
return params;
}
int
gsl_multilarge_nlinear_init (const gsl_vector * x,
gsl_multilarge_nlinear_fdf * fdf,
gsl_multilarge_nlinear_workspace * w)
{
return gsl_multilarge_nlinear_winit(x, NULL, fdf, w);
}
int
gsl_multilarge_nlinear_winit (const gsl_vector * x,
const gsl_vector * wts,
gsl_multilarge_nlinear_fdf * fdf,
gsl_multilarge_nlinear_workspace * w)
{
const size_t n = w->f->size;
if (n != fdf->n)
{
GSL_ERROR ("function size does not match workspace", GSL_EBADLEN);
}
else if (w->x->size != x->size)
{
GSL_ERROR ("vector length does not match workspace", GSL_EBADLEN);
}
else if (wts != NULL && n != wts->size)
{
GSL_ERROR ("weight vector length does not match workspace", GSL_EBADLEN);
}
else
{
size_t i;
/* initialize counters for function and Jacobian evaluations */
fdf->nevalf = 0;
fdf->nevaldfu = 0;
fdf->nevaldf2 = 0;
fdf->nevalfvv = 0;
w->fdf = fdf;
gsl_vector_memcpy(w->x, x);
w->niter = 0;
if (wts)
{
w->sqrt_wts = w->sqrt_wts_work;
for (i = 0; i < n; ++i)
{
double wi = gsl_vector_get(wts, i);
gsl_vector_set(w->sqrt_wts, i, sqrt(wi));
}
}
else
{
w->sqrt_wts = NULL;
}
return (w->type->init) (w->state, w->sqrt_wts, w->fdf,
w->x, w->f, w->g, w->JTJ);
}
}
int
gsl_multilarge_nlinear_iterate (gsl_multilarge_nlinear_workspace * w)
{
int status =
(w->type->iterate) (w->state, w->sqrt_wts, w->fdf,
w->x, w->f, w->g, w->JTJ, w->dx);
w->niter++;
return status;
}
double
gsl_multilarge_nlinear_avratio (const gsl_multilarge_nlinear_workspace * w)
{
return (w->type->avratio) (w->state);
}
int
gsl_multilarge_nlinear_rcond (double * rcond, const gsl_multilarge_nlinear_workspace * w)
{
int status = (w->type->rcond) (rcond, w->JTJ, w->state);
return status;
}
int
gsl_multilarge_nlinear_covar (gsl_matrix * covar, gsl_multilarge_nlinear_workspace * w)
{
if (covar->size1 != covar->size2)
{
GSL_ERROR ("covariance matrix must be square", GSL_ENOTSQR);
}
else if (covar->size1 != w->p)
{
GSL_ERROR ("covariance matrix does not match workspace", GSL_EBADLEN);
}
else
{
int status = (w->type->covar) (w->JTJ, covar, w->state);
return status;
}
}
/*
gsl_multilarge_nlinear_driver()
Iterate the nonlinear least squares solver until completion
Inputs: maxiter - maximum iterations to allow
xtol - tolerance in step x
gtol - tolerance in gradient
ftol - tolerance in ||f||
callback - callback function to call each iteration
callback_params - parameters to pass to callback function
info - (output) info flag on why iteration terminated
1 = stopped due to small step size ||dx|
2 = stopped due to small gradient
3 = stopped due to small change in f
GSL_ETOLX = ||dx|| has converged to within machine
precision (and xtol is too small)
GSL_ETOLG = ||g||_inf is smaller than machine
precision (gtol is too small)
GSL_ETOLF = change in ||f|| is smaller than machine
precision (ftol is too small)
w - workspace
Return:
GSL_SUCCESS if converged
GSL_MAXITER if maxiter exceeded without converging
GSL_ENOPROG if no accepted step found on first iteration
*/
int
gsl_multilarge_nlinear_driver (const size_t maxiter,
const double xtol,
const double gtol,
const double ftol,
void (*callback)(const size_t iter, void *params,
const gsl_multilarge_nlinear_workspace *w),
void *callback_params,
int *info,
gsl_multilarge_nlinear_workspace * w)
{
int status;
size_t iter = 0;
/* call user callback function prior to any iterations
* with initial system state */
if (callback)
callback(iter, callback_params, w);
do
{
status = gsl_multilarge_nlinear_iterate (w);
/*
* If the solver reports no progress on the first iteration,
* then it didn't find a single step to reduce the
* cost function and more iterations won't help so return.
*
* If we get a no progress flag on subsequent iterations,
* it means we did find a good step in a previous iteration,
* so continue iterating since the solver has now reset
* mu to its initial value.
*/
if (status == GSL_ENOPROG && iter == 0)
{
*info = status;
return GSL_EMAXITER;
}
++iter;
if (callback)
callback(iter, callback_params, w);
/* test for convergence */
status = gsl_multilarge_nlinear_test(xtol, gtol, ftol, info, w);
}
while (status == GSL_CONTINUE && iter < maxiter);
/*
* the following error codes mean that the solution has converged
* to within machine precision, so record the error code in info
* and return success
*/
if (status == GSL_ETOLF || status == GSL_ETOLX || status == GSL_ETOLG)
{
*info = status;
status = GSL_SUCCESS;
}
/* check if max iterations reached */
if (iter >= maxiter && status != GSL_SUCCESS)
status = GSL_EMAXITER;
return status;
} /* gsl_multilarge_nlinear_driver() */
const char *
gsl_multilarge_nlinear_name (const gsl_multilarge_nlinear_workspace * w)
{
return w->type->name;
}
gsl_vector *
gsl_multilarge_nlinear_position (const gsl_multilarge_nlinear_workspace * w)
{
return w->x;
}
gsl_vector *
gsl_multilarge_nlinear_residual (const gsl_multilarge_nlinear_workspace * w)
{
return w->f;
}
gsl_vector *
gsl_multilarge_nlinear_step (const gsl_multilarge_nlinear_workspace * w)
{
return w->dx;
}
size_t
gsl_multilarge_nlinear_niter (const gsl_multilarge_nlinear_workspace * w)
{
return w->niter;
}
const char *
gsl_multilarge_nlinear_trs_name (const gsl_multilarge_nlinear_workspace * w)
{
return w->params.trs->name;
}
/*
gsl_multilarge_nlinear_eval_f()
Compute residual vector y with user callback function, and apply
weighting transform if given:
y~ = sqrt(W) y
Inputs: fdf - callback function
x - model parameters
swts - weight matrix sqrt(W) = sqrt(diag(w1,w2,...,wn))
set to NULL for unweighted fit
y - (output) (weighted) residual vector
y_i = sqrt(w_i) f_i where f_i is unweighted residual
*/
int
gsl_multilarge_nlinear_eval_f(gsl_multilarge_nlinear_fdf *fdf,
const gsl_vector *x,
const gsl_vector *swts,
gsl_vector *y)
{
int s = ((*((fdf)->f)) (x, fdf->params, y));
++(fdf->nevalf);
/* y <- sqrt(W) y */
if (swts)
gsl_vector_mul(y, swts);
return s;
}
/*
gsl_multilarge_nlinear_eval_df()
Compute Jacobian matrix-vector product:
v = J * u
or
v = J^T u
Inputs: TransJ - use J or J^T
x - model parameters
f - residual vector f(x)
u - input vector u
swts - weight matrix W = diag(w1,w2,...,wn)
set to NULL for unweighted fit
h - finite difference step size
fdtype - finite difference method
fdf - callback function
v - (output) vector v
JTJ - (output) matrix J^T J
work - workspace for finite difference, size n
*/
int
gsl_multilarge_nlinear_eval_df(const CBLAS_TRANSPOSE_t TransJ,
const gsl_vector *x,
const gsl_vector *f,
const gsl_vector *u,
const gsl_vector *swts,
const double h,
const gsl_multilarge_nlinear_fdtype fdtype,
gsl_multilarge_nlinear_fdf *fdf,
gsl_vector *v,
gsl_matrix *JTJ,
gsl_vector *work)
{
const size_t n = fdf->n;
const size_t p = fdf->p;
if (u != NULL && ((TransJ == CblasNoTrans && u->size != p) ||
(TransJ == CblasTrans && u->size != n)))
{
GSL_ERROR("u vector has wrong size", GSL_EBADLEN);
}
else if (v != NULL && ((TransJ == CblasNoTrans && v->size != n) ||
(TransJ == CblasTrans && v->size != p)))
{
GSL_ERROR("v vector has wrong size", GSL_EBADLEN);
}
else if (JTJ != NULL && ((JTJ->size1 != p) || (JTJ->size2 != p)))
{
GSL_ERROR("JTJ matrix has wrong size", GSL_EBADLEN);
}
else
{
int status;
if (fdf->df)
{
/* call user-supplied function */
status = ((*((fdf)->df)) (TransJ, x, u, fdf->params, v, JTJ));
if (v)
++(fdf->nevaldfu);
if (JTJ)
++(fdf->nevaldf2);
}
else
{
#if 0
/* use finite difference Jacobian approximation */
status = gsl_multilarge_nlinear_df(h, fdtype, x, swts, fdf, f, df, work);
#endif
}
return status;
}
}
/*
gsl_multilarge_nlinear_eval_fvv()
Compute second direction derivative vector yvv with user
callback function, and apply weighting transform if given:
yvv~ = sqrt(W) yvv
Inputs: h - step size for finite difference, if needed
x - model parameters, size p
v - unscaled geodesic velocity vector, size p
f - residual vector f(x), size n
swts - weight matrix sqrt(W) = sqrt(diag(w1,w2,...,wn))
set to NULL for unweighted fit
fdf - callback function
yvv - (output) (weighted) second directional derivative vector
yvv_i = sqrt(w_i) fvv_i where f_i is unweighted
work - workspace, size p
*/
int
gsl_multilarge_nlinear_eval_fvv(const double h,
const gsl_vector *x,
const gsl_vector *v,
const gsl_vector *f,
const gsl_vector *swts,
gsl_multilarge_nlinear_fdf *fdf,
gsl_vector *yvv,
gsl_vector *work)
{
int status;
if (fdf->fvv != NULL)
{
/* call user-supplied function */
status = ((*((fdf)->fvv)) (x, v, fdf->params, yvv));
++(fdf->nevalfvv);
}
else
{
#if 0
/* use finite difference approximation */
status = gsl_multilarge_nlinear_fdfvv(h, x, v, f, J,
swts, fdf, yvv, work);
#endif
}
/* yvv <- sqrt(W) yvv */
if (swts)
gsl_vector_mul(yvv, swts);
return status;
}
|