1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
/* multilarge_nlinear/subspace2D.c
*
* Copyright (C) 2016 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_multilarge_nlinear.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_poly.h>
/*
* This module implements a 2D subspace trust region subproblem method,
* as outlined in
*
* [1] G. A. Shultz, R. B. Schnabel, and R. H. Byrd
* A Family of Trust-Region-Based Algorithms for Unconstrained
* Minimization with Strong Global Convergence Properties,
* SIAM Journal on Numerical Analysis 1985 22:1, 47-67
*
* [2] R. H. Byrd, R. B. Schnabel, G. A. Shultz,
* Approximate solution of the trust region problem by
* minimization over two-dimensional subspaces,
* Mathematical Programming, January 1988, Volume 40,
* Issue 1, pp 247-263
*
* The idea is to solve:
*
* min_{dx} g^T dx + 1/2 dx^T B dx
*
* with constraints:
*
* ||D dx|| <= delta
* dx \in span{dx_sd, dx_gn}
*
* where B is the Hessian matrix, B = J^T J
*
* The steps are as follows:
*
* 1. preloop:
* a. Compute Gauss-Newton and steepest descent vectors,
* dx_gn, dx_sd
* b. Compute an orthonormal basis for span(D dx_sd, D dx_gn) by
* constructing W = [ D dx_sd, D dx_gn ] and performing a QR
* decomposition of W. The 2 columns of the Q matrix
* will then span the column space of W. W should have rank 2
* unless D*dx_sd and D*dx_gn are parallel, in which case it will
* have rank 1.
* c. Precompute various quantities needed for the step calculation
*
* 2. step:
* a. If the Gauss-Newton step is inside the trust region, use it
* b. if W has rank 1, we cannot form a 2D subspace, so in this case
* follow the steepest descent direction to the trust region boundary
* and use that as the step.
* c. In the full rank 2 case, if the GN point is outside the trust region,
* then the minimizer of the objective function lies on the trust
* region boundary. Therefore the minimization problem becomes:
*
* min_{dx} g^T dx + 1/2 dx^T B dx, with ||dx|| = delta, dx = Q * x
*
* where x is a 2-vector to be determined and the columns of Q are
* the orthonormal basis vectors of the subspace. Note the equality
* constraint now instead of <=. In terms of the new variable x,
* the minimization problem becomes:
*
* min_x subg^T x + 1/2 x^T subB x, with ||Q*x|| = ||x|| = delta
*
* where:
* subg = Q^T g (2-by-1)
* subB = Q^T B Q (2-by-2)
*
* This equality constrained 2D minimization problem can be solved
* with a Lagrangian multiplier, which results in a 4th degree polynomial
* equation to be solved. The equation is:
*
* lambda^4 1
* + lambda^3 2 tr(B)
* + lambda^2 (tr(B)^2 + 2 det(B) - g^T g / delta^2)
* + lambda^1 (2 det(B) tr(B) - 2 g^T adj(B)^T g / delta^2)
* + lambda^0 (det(B)^2 - g^T adj(B)^T adj(B) g / delta^2)
*
* where adj(B) is the adjugate matrix of B.
*
* We then check each of the 4 solutions for lambda to determine which
* lambda results in the smallest objective function value. This x
* is then used to construct the final step: dx = Q*x
*/
typedef struct
{
size_t n; /* number of observations */
size_t p; /* number of parameters */
gsl_vector *dx_gn; /* Gauss-Newton step, size p */
gsl_vector *dx_sd; /* steepest descent step, size p */
double norm_Dgn; /* || D dx_gn || */
double norm_Dsd; /* || D dx_sd || */
gsl_vector *workp1; /* workspace, length p */
gsl_vector *workp2; /* workspace, length p */
gsl_vector *workn; /* workspace, length n */
gsl_matrix *W; /* orthonormal basis for 2D subspace, p-by-2 */
gsl_matrix *work_JTJ; /* D^{-1} J^T J D^{-1}, p-by-p */
gsl_vector *tau; /* Householder scalars */
gsl_vector *subg; /* subspace gradient = W^T g, 2-by-1 */
gsl_matrix *subB; /* subspace Hessian = W^T B W, 2-by-2 */
gsl_permutation *perm; /* permutation matrix */
double trB; /* Tr(subB) */
double detB; /* det(subB) */
double normg; /* || subg || */
double term0; /* g^T adj(B)^T adj(B) g */
double term1; /* g^T adj(B)^T g */
size_t rank; /* rank of [ dx_sd, dx_gn ] matrix */
gsl_poly_complex_workspace *poly_p;
/* tunable parameters */
gsl_multilarge_nlinear_parameters params;
} subspace2D_state_t;
#include "common.c"
static void * subspace2D_alloc (const void * params, const size_t n, const size_t p);
static void subspace2D_free(void *vstate);
static int subspace2D_init(const void *vtrust_state, void *vstate);
static int subspace2D_preloop(const void * vtrust_state, void * vstate);
static int subspace2D_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate);
static int subspace2D_preduction(const void * vtrust_state, const gsl_vector * dx,
double * pred, void * vstate);
static int subspace2D_solution(const double lambda, gsl_vector * x,
subspace2D_state_t * state);
static double subspace2D_objective(const gsl_vector * x, subspace2D_state_t * state);
static int subspace2D_calc_gn(const gsl_multilarge_nlinear_trust_state * trust_state, gsl_vector * dx);
static int subspace2D_calc_sd(const gsl_multilarge_nlinear_trust_state * trust_state, gsl_vector * dx,
subspace2D_state_t * state);
static void *
subspace2D_alloc (const void * params, const size_t n, const size_t p)
{
const gsl_multilarge_nlinear_parameters *par = (const gsl_multilarge_nlinear_parameters *) params;
subspace2D_state_t *state;
state = calloc(1, sizeof(subspace2D_state_t));
if (state == NULL)
{
GSL_ERROR_NULL ("failed to allocate subspace2D state", GSL_ENOMEM);
}
state->dx_gn = gsl_vector_alloc(p);
if (state->dx_gn == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for dx_gn", GSL_ENOMEM);
}
state->dx_sd = gsl_vector_alloc(p);
if (state->dx_sd == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for dx_sd", GSL_ENOMEM);
}
state->workp1 = gsl_vector_alloc(p);
if (state->workp1 == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workp1", GSL_ENOMEM);
}
state->workp2 = gsl_vector_alloc(p);
if (state->workp2 == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workp2", GSL_ENOMEM);
}
state->workn = gsl_vector_alloc(n);
if (state->workn == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workn", GSL_ENOMEM);
}
state->W = gsl_matrix_alloc(p, 2);
if (state->W == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for W", GSL_ENOMEM);
}
state->work_JTJ = gsl_matrix_alloc(p, p);
if (state->work_JTJ == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for work_JTJ", GSL_ENOMEM);
}
state->tau = gsl_vector_alloc(2);
if (state->tau == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for tau", GSL_ENOMEM);
}
state->subg = gsl_vector_alloc(2);
if (state->subg == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for subg", GSL_ENOMEM);
}
state->subB = gsl_matrix_alloc(2, 2);
if (state->subB == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for subB", GSL_ENOMEM);
}
state->perm = gsl_permutation_alloc(2);
if (state->perm == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for perm", GSL_ENOMEM);
}
state->poly_p = gsl_poly_complex_workspace_alloc(5);
if (state->poly_p == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for poly workspace", GSL_ENOMEM);
}
state->n = n;
state->p = p;
state->rank = 0;
state->params = *par;
return state;
}
static void
subspace2D_free(void *vstate)
{
subspace2D_state_t *state = (subspace2D_state_t *) vstate;
if (state->dx_gn)
gsl_vector_free(state->dx_gn);
if (state->dx_sd)
gsl_vector_free(state->dx_sd);
if (state->workp1)
gsl_vector_free(state->workp1);
if (state->workp2)
gsl_vector_free(state->workp2);
if (state->workn)
gsl_vector_free(state->workn);
if (state->W)
gsl_matrix_free(state->W);
if (state->work_JTJ)
gsl_matrix_free(state->work_JTJ);
if (state->tau)
gsl_vector_free(state->tau);
if (state->subg)
gsl_vector_free(state->subg);
if (state->subB)
gsl_matrix_free(state->subB);
if (state->perm)
gsl_permutation_free(state->perm);
if (state->poly_p)
gsl_poly_complex_workspace_free(state->poly_p);
free(state);
}
/*
subspace2D_init()
Initialize subspace2D solver
Inputs: vtrust_state - trust state
vstate - workspace
Return: success/error
*/
static int
subspace2D_init(const void *vtrust_state, void *vstate)
{
(void)vtrust_state;
(void)vstate;
return GSL_SUCCESS;
}
/*
subspace2D_preloop()
Initialize subspace2D method prior to iteration loop.
This involves computing the Gauss-Newton step and
steepest descent step
Notes: on output,
1) state->dx_gn contains Gauss-Newton step
2) state->dx_sd contains steepest descent step
3) state->rank contains the rank([dx_sd, dx_gn])
4) if full rank subspace (rank = 2), then:
state->trB = Tr(subB)
state->detB = det(subB)
state->normg = || subg ||
*/
static int
subspace2D_preloop(const void * vtrust_state, void * vstate)
{
int status;
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
subspace2D_state_t *state = (subspace2D_state_t *) vstate;
gsl_vector_view v;
double work_data[2];
gsl_vector_view work = gsl_vector_view_array(work_data, 2);
int signum;
/* calculate Gauss-Newton step */
status = subspace2D_calc_gn(trust_state, state->dx_gn);
if (status)
return status;
/* now calculate the steepest descent step */
status = subspace2D_calc_sd(trust_state, state->dx_sd, state);
if (status)
return status;
/* store norms */
state->norm_Dgn = scaled_enorm(trust_state->diag, state->dx_gn);
state->norm_Dsd = scaled_enorm(trust_state->diag, state->dx_sd);
/*
* now compute orthonormal basis for span(D dx_sd, D dx_gn) using
* QR decomposition; set W = [ D dx_sd, D dx_gn ] and normalize each
* column to unit magnitude. Then the Q matrix will form a basis for Col(W)
*/
v = gsl_matrix_column(state->W, 0);
gsl_vector_memcpy(&v.vector, state->dx_sd);
gsl_vector_mul(&v.vector, trust_state->diag);
if (state->norm_Dsd != 0)
gsl_vector_scale(&v.vector, 1.0 / state->norm_Dsd);
v = gsl_matrix_column(state->W, 1);
gsl_vector_memcpy(&v.vector, state->dx_gn);
gsl_vector_mul(&v.vector, trust_state->diag);
if (state->norm_Dgn != 0)
gsl_vector_scale(&v.vector, 1.0 / state->norm_Dgn);
/* use a rank revealing QR decomposition in case dx_sd and dx_gn
* are parallel */
gsl_linalg_QRPT_decomp(state->W, state->tau, state->perm, &signum, &work.vector);
/* check for parallel dx_sd, dx_gn, in which case rank will be 1 */
state->rank = gsl_linalg_QRPT_rank(state->W, -1.0);
if (state->rank == 2)
{
/*
* full rank subspace, compute:
* subg = Q^T D^{-1} g
* subB = Q^T D^{-1} B D^{-1} Q where B = J^T J
*/
const size_t p = state->p;
size_t i, j;
double B00, B10, B11, g0, g1;
/* compute subg */
gsl_vector_memcpy(state->workp1, trust_state->g);
gsl_vector_div(state->workp1, trust_state->diag);
gsl_linalg_QR_QTvec(state->W, state->tau, state->workp1);
g0 = gsl_vector_get(state->workp1, 0);
g1 = gsl_vector_get(state->workp1, 1);
gsl_vector_set(state->subg, 0, g0);
gsl_vector_set(state->subg, 1, g1);
/* compute subB */
/* compute work_JTJ = D^{-1} J^T J D^{-1} using lower triangle */
for (j = 0; j < p; ++j)
{
double dj = gsl_vector_get(trust_state->diag, j);
for (i = j; i < p; ++i)
{
double di = gsl_vector_get(trust_state->diag, i);
double Aij = gsl_matrix_get(trust_state->JTJ, i, j);
gsl_matrix_set(state->work_JTJ, i, j, Aij / (di * dj));
}
}
gsl_matrix_transpose_tricpy('L', 0, state->work_JTJ, state->work_JTJ);
/* compute work_JTJ = Q^T D^{-1} J^T J D^{-1} Q */
gsl_linalg_QR_matQ(state->W, state->tau, state->work_JTJ);
gsl_linalg_QR_QTmat(state->W, state->tau, state->work_JTJ);
#if 0
/* compute subB = Q^T D^{-1} J^T J D^{-1} Q */
gsl_blas_dsyrk(CblasLower, CblasTrans, 1.0, &JQ.matrix, 0.0, state->subB);
#endif
B00 = gsl_matrix_get(state->work_JTJ, 0, 0);
B10 = gsl_matrix_get(state->work_JTJ, 1, 0);
B11 = gsl_matrix_get(state->work_JTJ, 1, 1);
gsl_matrix_set(state->subB, 0, 0, B00);
gsl_matrix_set(state->subB, 1, 0, B10);
gsl_matrix_set(state->subB, 1, 1, B11);
state->trB = B00 + B11;
state->detB = B00*B11 - B10*B10;
state->normg = gsl_blas_dnrm2(state->subg);
/* g^T adj(B)^T adj(B) g */
state->term0 = (B10*B10 + B11*B11)*g0*g0 -
2*B10*(B00 + B11)*g0*g1 +
(B00*B00 + B10*B10)*g1*g1;
/* g^T adj(B)^T g */
state->term1 = B11 * g0 * g0 + g1 * (B00*g1 - 2*B10*g0);
}
return GSL_SUCCESS;
}
/*
subspace2D_step()
Calculate a new step with 2D subspace method. Based on [1]. We
seek a vector dx in span{dx_gn, dx_sd} which minimizes the model
function subject to ||dx|| <= delta
*/
static int
subspace2D_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
subspace2D_state_t *state = (subspace2D_state_t *) vstate;
if (state->norm_Dgn <= delta)
{
/* Gauss-Newton step is inside trust region, use it as final step
* since it is the global minimizer of the quadratic model function */
gsl_vector_memcpy(dx, state->dx_gn);
}
else if (state->rank < 2)
{
/* rank of [dx_sd, dx_gn] is 1, meaning dx_sd and dx_gn
* are parallel so we can't form a 2D subspace. Follow the steepest
* descent direction to the trust region boundary as our step */
gsl_vector_memcpy(dx, state->dx_sd);
gsl_vector_scale(dx, delta / state->norm_Dsd);
}
else
{
int status;
const double delta_sq = delta * delta;
double u = state->normg / delta;
double a[5];
double z[8];
#if 1
a[0] = state->detB * state->detB - state->term0 / delta_sq;
a[1] = 2 * state->detB * state->trB - 2 * state->term1 / delta_sq;
a[2] = state->trB * state->trB + 2 * state->detB - u * u;
a[3] = 2 * state->trB;
a[4] = 1.0;
#else
double TrB_D = state->trB * delta;
double detB_D = state->detB * delta;
double normg_sq = state->normg * state->normg;
a[0] = detB_D * detB_D - state->term0;
a[1] = 2 * state->detB * state->trB * delta_sq - 2 * state->term1;
a[2] = TrB_D * TrB_D + 2 * state->detB * delta_sq - normg_sq;
a[3] = 2 * state->trB * delta_sq;
a[4] = delta_sq;
#endif
status = gsl_poly_complex_solve(a, 5, state->poly_p, z);
if (status == GSL_SUCCESS)
{
size_t i;
double min = 0.0;
int mini = -1;
double x_data[2];
gsl_vector_view x = gsl_vector_view_array(x_data, 2);
/*
* loop through all four values of the Lagrange multiplier
* lambda. For each lambda, evaluate the objective function
* with Re(lambda) to determine which lambda minimizes the
* function
*/
for (i = 0; i < 4; ++i)
{
double cost, normx;
/*fprintf(stderr, "root: %.12e + %.12e i\n",
z[2*i], z[2*i+1]);*/
status = subspace2D_solution(z[2*i], &x.vector, state);
if (status != GSL_SUCCESS)
continue; /* singular matrix system */
/* ensure ||x|| = delta */
normx = gsl_blas_dnrm2(&x.vector);
if (normx == 0.0)
continue;
gsl_vector_scale(&x.vector, delta / normx);
/* evaluate objective function to determine minimizer */
cost = subspace2D_objective(&x.vector, state);
if (mini < 0 || cost < min)
{
mini = (int) i;
min = cost;
}
}
if (mini < 0)
{
/* did not find minimizer - should not get here */
return GSL_FAILURE;
}
else
{
/* compute x which minimizes objective function */
subspace2D_solution(z[2*mini], &x.vector, state);
/* dx = Q * x */
gsl_vector_set_zero(dx);
gsl_vector_set(dx, 0, gsl_vector_get(&x.vector, 0));
gsl_vector_set(dx, 1, gsl_vector_get(&x.vector, 1));
gsl_linalg_QR_Qvec(state->W, state->tau, dx);
/* compute final dx by multiplying by D^{-1} */
gsl_vector_div(dx, trust_state->diag);
}
}
else
{
GSL_ERROR ("gsl_poly_complex_solve failed", status);
}
}
return GSL_SUCCESS;
}
static int
subspace2D_preduction(const void * vtrust_state, const gsl_vector * dx,
double * pred, void * vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
subspace2D_state_t *state = (subspace2D_state_t *) vstate;
*pred = quadratic_preduction(trust_state, dx, state->workn);
return GSL_SUCCESS;
}
/* solve 2D subspace problem: (B + lambda*I) x = -g */
static int
subspace2D_solution(const double lambda, gsl_vector * x,
subspace2D_state_t * state)
{
int status = GSL_SUCCESS;
double C_data[4];
gsl_matrix_view C = gsl_matrix_view_array(C_data, 2, 2);
double B00 = gsl_matrix_get(state->subB, 0, 0);
double B10 = gsl_matrix_get(state->subB, 1, 0);
double B11 = gsl_matrix_get(state->subB, 1, 1);
/* construct C = B + lambda*I */
gsl_matrix_set(&C.matrix, 0, 0, B00 + lambda);
gsl_matrix_set(&C.matrix, 1, 0, B10);
gsl_matrix_set(&C.matrix, 0, 1, B10);
gsl_matrix_set(&C.matrix, 1, 1, B11 + lambda);
/* use modified Cholesky in case C is not positive definite */
gsl_linalg_mcholesky_decomp(&C.matrix, state->perm, NULL);
gsl_linalg_mcholesky_solve(&C.matrix, state->perm, state->subg, x);
gsl_vector_scale(x, -1.0);
return status;
}
/* evaluate 2D objective function: f(x) = g^T x + 1/2 x^T B x */
static double
subspace2D_objective(const gsl_vector * x, subspace2D_state_t * state)
{
double f;
double y_data[2];
gsl_vector_view y = gsl_vector_view_array(y_data, 2);
/* compute: y = g + 1/2 B x */
gsl_vector_memcpy(&y.vector, state->subg);
gsl_blas_dsymv(CblasLower, 0.5, state->subB, x, 1.0, &y.vector);
/* compute: f = x^T ( g + 1/2 B x ) */
gsl_blas_ddot(x, &y.vector, &f);
return f;
}
/*
subspace2D_calc_gn()
Calculate Gauss-Newton step by solving
J^T J dx_gn = -J^T f
Inputs: trust_state - trust state variables
dx - (output) Gauss-Newton step vector
Return: success/error
*/
static int
subspace2D_calc_gn(const gsl_multilarge_nlinear_trust_state * trust_state, gsl_vector * dx)
{
int status;
const gsl_multilarge_nlinear_parameters *params = trust_state->params;
/* initialize linear least squares solver */
status = (params->solver->init)(trust_state, trust_state->solver_state);
if (status)
return status;
/* prepare the linear solver to compute Gauss-Newton step */
status = (params->solver->presolve)(0.0, trust_state, trust_state->solver_state);
if (status)
return status;
/* solve: J dx_gn = -f for Gauss-Newton step */
status = (params->solver->solve)(trust_state->g,
dx,
trust_state,
trust_state->solver_state);
if (status)
return status;
return GSL_SUCCESS;
}
/*
subspace2D_calc_sd()
Calculate steepest descent step,
dx_sd = - || D^{-1} g ||^2 / || J D^{-2} g ||^2 D^{-2} g
Inputs: trust_state - trust state variables
dx - (output) steepest descent vector
state - workspace
Return: success/error
*/
static int
subspace2D_calc_sd(const gsl_multilarge_nlinear_trust_state * trust_state, gsl_vector * dx,
subspace2D_state_t * state)
{
double norm_Dinvg; /* || D^{-1} g || */
double norm_JDinv2g; /* || J D^{-2} g || */
double alpha; /* || D^{-1} g ||^2 / || J D^{-2} g ||^2 */
double u;
/* compute workp1 = D^{-1} g and its norm */
gsl_vector_memcpy(state->workp1, trust_state->g);
gsl_vector_div(state->workp1, trust_state->diag);
norm_Dinvg = gsl_blas_dnrm2(state->workp1);
/* compute workp1 = D^{-2} g */
gsl_vector_div(state->workp1, trust_state->diag);
/* compute workp2 = J^T J D^{-2} g */
gsl_blas_dsymv(CblasLower, 1.0, trust_state->JTJ, state->workp1, 0.0, state->workp2);
/* compute norm_JDinv2g = || J D^{-2} g || */
gsl_blas_ddot(state->workp1, state->workp2, &u);
norm_JDinv2g = sqrt(u);
u = norm_Dinvg / norm_JDinv2g;
alpha = u * u;
/* dx_sd = -alpha D^{-2} g */
gsl_vector_memcpy(dx, state->workp1);
gsl_vector_scale(dx, -alpha);
return GSL_SUCCESS;
}
static const gsl_multilarge_nlinear_trs subspace2D_type =
{
"2D-subspace",
subspace2D_alloc,
subspace2D_init,
subspace2D_preloop,
subspace2D_step,
subspace2D_preduction,
subspace2D_free
};
const gsl_multilarge_nlinear_trs *gsl_multilarge_nlinear_trs_subspace2D = &subspace2D_type;
|