1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/* ode-initval/rk2simp.c
*
* Copyright (C) 2004 Tuomo Keskitalo
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Runge-Kutta 2, Gaussian implicit. Also known as implicit midpoint rule.
Non-linear equations solved by linearization, LU-decomposition
and matrix inversion. For reference, see eg.
Ascher, U.M., Petzold, L.R., Computer methods for ordinary
differential and differential-algebraic equations, SIAM,
Philadelphia, 1998.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_odeiv.h>
#include <gsl/gsl_linalg.h>
#include "odeiv_util.h"
typedef struct
{
double *Y1;
double *y0;
double *y0_orig;
double *ytmp;
double *dfdy; /* Jacobian */
double *dfdt; /* time derivatives, not used */
double *y_onestep;
gsl_permutation *p;
}
rk2simp_state_t;
static void *
rk2simp_alloc (size_t dim)
{
rk2simp_state_t *state =
(rk2simp_state_t *) malloc (sizeof (rk2simp_state_t));
if (state == 0)
{
GSL_ERROR_NULL ("failed to allocate space for rk2simp_state",
GSL_ENOMEM);
}
state->Y1 = (double *) malloc (dim * sizeof (double));
if (state->Y1 == 0)
{
free (state);
GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM);
}
state->y0 = (double *) malloc (dim * sizeof (double));
if (state->y0 == 0)
{
free (state->Y1);
free (state);
GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);
}
state->y0_orig = (double *) malloc (dim * sizeof (double));
if (state->y0_orig == 0)
{
free (state->Y1);
free (state->y0);
free (state);
GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM);
}
state->ytmp = (double *) malloc (dim * sizeof (double));
if (state->ytmp == 0)
{
free (state->Y1);
free (state->y0);
free (state->y0_orig);
free (state);
GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);
}
state->dfdy = (double *) malloc (dim * dim * sizeof (double));
if (state->dfdy == 0)
{
free (state->Y1);
free (state->y0);
free (state->y0_orig);
free (state->ytmp);
free (state);
GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM);
}
state->dfdt = (double *) malloc (dim * sizeof (double));
if (state->dfdt == 0)
{
free (state->Y1);
free (state->y0);
free (state->y0_orig);
free (state->ytmp);
free (state->dfdy);
free (state);
GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM);
}
state->y_onestep = (double *) malloc (dim * sizeof (double));
if (state->y_onestep == 0)
{
free (state->Y1);
free (state->y0);
free (state->y0_orig);
free (state->ytmp);
free (state->dfdy);
free (state->dfdt);
free (state);
GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM);
}
state->p = gsl_permutation_alloc (dim);
if (state->p == 0)
{
free (state->Y1);
free (state->y0);
free (state->y0_orig);
free (state->ytmp);
free (state->dfdy);
free (state->dfdt);
free (state->y_onestep);
free (state);
GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM);
}
return state;
}
static int
rk2simp_step (double *y, rk2simp_state_t * state,
const double h, const double t,
const size_t dim, const gsl_odeiv_system * sys)
{
/* Makes a Runge-Kutta 2nd order semi-implicit advance with step size h.
y0 is initial values of variables y.
The linearized semi-implicit equations to calculate are:
Y1 = y0 + h/2 * (1 - h/2 * df/dy)^(-1) * f(t + h/2, y0)
y = y0 + h * f(t + h/2, Y1)
*/
const double *y0 = state->y0;
double *Y1 = state->Y1;
double *ytmp = state->ytmp;
size_t i;
int s, ps;
gsl_matrix_view J = gsl_matrix_view_array (state->dfdy, dim, dim);
/* First solve Y1.
Calculate the inverse matrix (1 - h/2 * df/dy)^-1
*/
/* Create matrix to J */
s = GSL_ODEIV_JA_EVAL (sys, t, y0, state->dfdy, state->dfdt);
if (s != GSL_SUCCESS)
{
return s;
}
gsl_matrix_scale (&J.matrix, -h / 2.0);
gsl_matrix_add_diagonal(&J.matrix, 1.0);
/* Invert it by LU-decomposition to invmat */
s += gsl_linalg_LU_decomp (&J.matrix, state->p, &ps);
if (s != GSL_SUCCESS)
{
return GSL_EFAILED;
}
/* Evaluate f(t + h/2, y0) */
s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, y0, ytmp);
if (s != GSL_SUCCESS)
{
return s;
}
/* Calculate Y1 = y0 + h/2 * ((1-h/2 * df/dy)^-1) ytmp */
{
gsl_vector_const_view y0_view = gsl_vector_const_view_array(y0, dim);
gsl_vector_view ytmp_view = gsl_vector_view_array(ytmp, dim);
gsl_vector_view Y1_view = gsl_vector_view_array(Y1, dim);
s = gsl_linalg_LU_solve (&J.matrix, state->p,
&ytmp_view.vector, &Y1_view.vector);
gsl_vector_scale (&Y1_view.vector, 0.5 * h);
gsl_vector_add (&Y1_view.vector, &y0_view.vector);
}
/* And finally evaluation of f(t + h/2, Y1) and calculation of y */
s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, Y1, ytmp);
if (s != GSL_SUCCESS)
{
return s;
}
for (i = 0; i < dim; i++)
{
y[i] = y0[i] + h * ytmp[i];
}
return s;
}
static int
rk2simp_apply (void *vstate, size_t dim, double t, double h,
double y[], double yerr[], const double dydt_in[],
double dydt_out[], const gsl_odeiv_system * sys)
{
rk2simp_state_t *state = (rk2simp_state_t *) vstate;
size_t i;
double *y0 = state->y0;
double *y0_orig = state->y0_orig;
double *y_onestep = state->y_onestep;
/* Error estimation is done by step doubling procedure */
DBL_MEMCPY (y0, y, dim);
/* Save initial values in case of failure */
DBL_MEMCPY (y0_orig, y, dim);
/* First traverse h with one step (save to y_onestep) */
DBL_MEMCPY (y_onestep, y, dim);
{
int s = rk2simp_step (y_onestep, state, h, t, dim, sys);
if (s != GSL_SUCCESS)
{
return s;
}
}
/* Then with two steps with half step length (save to y) */
{
int s = rk2simp_step (y, state, h / 2.0, t, dim, sys);
if (s != GSL_SUCCESS)
{
/* Restore original y vector */
DBL_MEMCPY (y, y0_orig, dim);
return s;
}
}
DBL_MEMCPY (y0, y, dim);
{
int s = rk2simp_step (y, state, h / 2.0, t + h / 2.0, dim, sys);
if (s != GSL_SUCCESS)
{
/* Restore original y vector */
DBL_MEMCPY (y, y0_orig, dim);
return s;
}
}
/* Derivatives at output */
if (dydt_out != NULL)
{
int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);
if (s != GSL_SUCCESS)
{
/* Restore original y vector */
DBL_MEMCPY (y, y0_orig, dim);
return s;
}
}
/* Error estimation */
for (i = 0; i < dim; i++)
{
yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0;
}
return GSL_SUCCESS;
}
static int
rk2simp_reset (void *vstate, size_t dim)
{
rk2simp_state_t *state = (rk2simp_state_t *) vstate;
DBL_ZERO_MEMSET (state->Y1, dim);
DBL_ZERO_MEMSET (state->y0, dim);
DBL_ZERO_MEMSET (state->y0_orig, dim);
DBL_ZERO_MEMSET (state->ytmp, dim);
DBL_ZERO_MEMSET (state->dfdt, dim * dim);
DBL_ZERO_MEMSET (state->dfdt, dim);
DBL_ZERO_MEMSET (state->y_onestep, dim);
return GSL_SUCCESS;
}
static unsigned int
rk2simp_order (void *vstate)
{
rk2simp_state_t *state = (rk2simp_state_t *) vstate;
state = 0; /* prevent warnings about unused parameters */
return 2;
}
static void
rk2simp_free (void *vstate)
{
rk2simp_state_t *state = (rk2simp_state_t *) vstate;
free (state->Y1);
free (state->y0);
free (state->y0_orig);
free (state->ytmp);
free (state->dfdy);
free (state->dfdt);
free (state->y_onestep);
gsl_permutation_free (state->p);
free (state);
}
static const gsl_odeiv_step_type rk2simp_type = {
"rk2simp", /* name */
0, /* can use dydt_in? */
1, /* gives exact dydt_out? */
&rk2simp_alloc,
&rk2simp_apply,
&rk2simp_reset,
&rk2simp_order,
&rk2simp_free
};
const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp = &rk2simp_type;
|