1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/* interpolation/interp_poly.c
*
* Copyright (C) 2001 DAN, HO-JIN
* Copyright (C) 2013 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Modified for standalone use in polynomial directory, B.Gough 2001 */
#include <config.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_poly.h>
int
gsl_poly_dd_init (double dd[], const double xa[], const double ya[],
size_t size)
{
size_t i, j;
/* Newton's divided differences */
dd[0] = ya[0];
for (j = size - 1; j >= 1; j--)
{
dd[j] = (ya[j] - ya[j - 1]) / (xa[j] - xa[j - 1]);
}
for (i = 2; i < size; i++)
{
for (j = size - 1; j >= i; j--)
{
dd[j] = (dd[j] - dd[j - 1]) / (xa[j] - xa[j - i]);
}
}
return GSL_SUCCESS;
}
int
gsl_poly_dd_taylor (double c[], double xp,
const double dd[], const double xa[], size_t size,
double w[])
{
size_t i, j;
for (i = 0; i < size; i++)
{
c[i] = 0.0;
w[i] = 0.0;
}
w[size - 1] = 1.0;
c[0] = dd[0];
for (i = size - 1; i-- > 0;)
{
w[i] = -w[i + 1] * (xa[size - 2 - i] - xp);
for (j = i + 1; j < size - 1; j++)
{
w[j] = w[j] - w[j + 1] * (xa[size - 2 - i] - xp);
}
for (j = i; j < size; j++)
{
c[j - i] += w[j] * dd[size - i - 1];
}
}
return GSL_SUCCESS;
}
/*
gsl_poly_dd_hermite_init()
Compute divided difference representation of data
for Hermite polynomial interpolation
Inputs: dd - (output) array of size 2*size containing
divided differences, dd[k] = f[z_0,z_1,...,z_k]
za - (output) array of size 2*size containing
z values
xa - x data
ya - y data
dya - dy/dx data
size - size of xa,ya,dya arrays
Return: success
*/
int
gsl_poly_dd_hermite_init (double dd[], double za[], const double xa[], const double ya[],
const double dya[], const size_t size)
{
const size_t N = 2 * size;
size_t i, j;
/* Hermite divided differences */
dd[0] = ya[0];
/* compute: dd[j] = f[z_{j-1},z_j] for j \in [1,N-1] */
for (j = 0; j < size; ++j)
{
za[2*j] = xa[j];
za[2*j + 1] = xa[j];
if (j != 0)
{
dd[2*j] = (ya[j] - ya[j - 1]) / (xa[j] - xa[j - 1]);
dd[2*j - 1] = dya[j - 1];
}
}
dd[N - 1] = dya[size - 1];
for (i = 2; i < N; i++)
{
for (j = N - 1; j >= i; j--)
{
dd[j] = (dd[j] - dd[j - 1]) / (za[j] - za[j - i]);
}
}
return GSL_SUCCESS;
} /* gsl_poly_dd_hermite_init() */
|