1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/* randist/dirichlet.c
*
* Copyright (C) 2007 Brian Gough
* Copyright (C) 2002 Gavin E. Crooks <gec@compbio.berkeley.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf_gamma.h>
/* The Dirichlet probability distribution of order K-1 is
p(\theta_1,...,\theta_K) d\theta_1 ... d\theta_K =
(1/Z) \prod_i=1,K \theta_i^{alpha_i - 1} \delta(1 -\sum_i=1,K \theta_i)
The normalization factor Z can be expressed in terms of gamma functions:
Z = {\prod_i=1,K \Gamma(\alpha_i)} / {\Gamma( \sum_i=1,K \alpha_i)}
The K constants, \alpha_1,...,\alpha_K, must be positive. The K parameters,
\theta_1,...,\theta_K are nonnegative and sum to 1.
The random variates are generated by sampling K values from gamma
distributions with parameters a=\alpha_i, b=1, and renormalizing.
See A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991).
Gavin E. Crooks <gec@compbio.berkeley.edu> (2002)
*/
static void ran_dirichlet_small (const gsl_rng * r, const size_t K, const double alpha[], double theta[]);
void
gsl_ran_dirichlet (const gsl_rng * r, const size_t K,
const double alpha[], double theta[])
{
size_t i;
double norm = 0.0;
for (i = 0; i < K; i++)
{
theta[i] = gsl_ran_gamma (r, alpha[i], 1.0);
}
for (i = 0; i < K; i++)
{
norm += theta[i];
}
if (norm < GSL_SQRT_DBL_MIN) /* Handle underflow */
{
ran_dirichlet_small (r, K, alpha, theta);
return;
}
for (i = 0; i < K; i++)
{
theta[i] /= norm;
}
}
/* When the values of alpha[] are small, scale the variates to avoid
underflow so that the result is not 0/0. Note that the Dirichlet
distribution is defined by a ratio of gamma functions so we can
take out an arbitrary factor to keep the values in the range of
double precision. */
static void
ran_dirichlet_small (const gsl_rng * r, const size_t K,
const double alpha[], double theta[])
{
size_t i;
double norm = 0.0, umax = 0;
for (i = 0; i < K; i++)
{
double u = log(gsl_rng_uniform_pos (r)) / alpha[i];
theta[i] = u;
if (u > umax || i == 0) {
umax = u;
}
}
for (i = 0; i < K; i++)
{
theta[i] = exp(theta[i] - umax);
}
for (i = 0; i < K; i++)
{
theta[i] = theta[i] * gsl_ran_gamma (r, alpha[i] + 1.0, 1.0);
}
for (i = 0; i < K; i++)
{
norm += theta[i];
}
for (i = 0; i < K; i++)
{
theta[i] /= norm;
}
}
double
gsl_ran_dirichlet_pdf (const size_t K,
const double alpha[], const double theta[])
{
return exp (gsl_ran_dirichlet_lnpdf (K, alpha, theta));
}
double
gsl_ran_dirichlet_lnpdf (const size_t K,
const double alpha[], const double theta[])
{
/*We calculate the log of the pdf to minimize the possibility of overflow */
size_t i;
double log_p = 0.0;
double sum_alpha = 0.0;
for (i = 0; i < K; i++)
{
log_p += (alpha[i] - 1.0) * log (theta[i]);
}
for (i = 0; i < K; i++)
{
sum_alpha += alpha[i];
}
log_p += gsl_sf_lngamma (sum_alpha);
for (i = 0; i < K; i++)
{
log_p -= gsl_sf_lngamma (alpha[i]);
}
return log_p;
}
|