File: dirichlet.c

package info (click to toggle)
gsl-doc 2.3-1
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 27,748 kB
  • ctags: 15,177
  • sloc: ansic: 235,014; sh: 11,585; makefile: 925
file content (163 lines) | stat: -rw-r--r-- 4,077 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/* randist/dirichlet.c
 * 
 * Copyright (C) 2007 Brian Gough
 * Copyright (C) 2002 Gavin E. Crooks <gec@compbio.berkeley.edu>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf_gamma.h>


/* The Dirichlet probability distribution of order K-1 is 

     p(\theta_1,...,\theta_K) d\theta_1 ... d\theta_K = 
        (1/Z) \prod_i=1,K \theta_i^{alpha_i - 1} \delta(1 -\sum_i=1,K \theta_i)

   The normalization factor Z can be expressed in terms of gamma functions:

      Z = {\prod_i=1,K \Gamma(\alpha_i)} / {\Gamma( \sum_i=1,K \alpha_i)}  

   The K constants, \alpha_1,...,\alpha_K, must be positive. The K parameters, 
   \theta_1,...,\theta_K are nonnegative and sum to 1.

   The random variates are generated by sampling K values from gamma
   distributions with parameters a=\alpha_i, b=1, and renormalizing. 
   See A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991).

   Gavin E. Crooks <gec@compbio.berkeley.edu> (2002)
*/

static void ran_dirichlet_small (const gsl_rng * r, const size_t K, const double alpha[], double theta[]);

void
gsl_ran_dirichlet (const gsl_rng * r, const size_t K,
                   const double alpha[], double theta[])
{
  size_t i;
  double norm = 0.0;

  for (i = 0; i < K; i++)
    {
      theta[i] = gsl_ran_gamma (r, alpha[i], 1.0);
    }
  
  for (i = 0; i < K; i++)
    {
      norm += theta[i];
    }

  if (norm < GSL_SQRT_DBL_MIN)  /* Handle underflow */
    {
      ran_dirichlet_small (r, K, alpha, theta);
      return;
    }

  for (i = 0; i < K; i++)
    {
      theta[i] /= norm;
    }
}


/* When the values of alpha[] are small, scale the variates to avoid
   underflow so that the result is not 0/0.  Note that the Dirichlet
   distribution is defined by a ratio of gamma functions so we can
   take out an arbitrary factor to keep the values in the range of
   double precision. */

static void 
ran_dirichlet_small (const gsl_rng * r, const size_t K,
                     const double alpha[], double theta[])
{
  size_t i;
  double norm = 0.0, umax = 0;

  for (i = 0; i < K; i++)
    {
      double u = log(gsl_rng_uniform_pos (r)) / alpha[i];
      
      theta[i] = u;

      if (u > umax || i == 0) {
        umax = u;
      }
    }
  
  for (i = 0; i < K; i++)
    {
      theta[i] = exp(theta[i] - umax);
    }
  
  for (i = 0; i < K; i++)
    {
      theta[i] = theta[i] * gsl_ran_gamma (r, alpha[i] + 1.0, 1.0);
    }

  for (i = 0; i < K; i++)
    {
      norm += theta[i];
    }

  for (i = 0; i < K; i++)
    {
      theta[i] /= norm;
    }
}





double
gsl_ran_dirichlet_pdf (const size_t K,
                       const double alpha[], const double theta[])
{
  return exp (gsl_ran_dirichlet_lnpdf (K, alpha, theta));
}

double
gsl_ran_dirichlet_lnpdf (const size_t K,
                         const double alpha[], const double theta[])
{
  /*We calculate the log of the pdf to minimize the possibility of overflow */
  size_t i;
  double log_p = 0.0;
  double sum_alpha = 0.0;

  for (i = 0; i < K; i++)
    {
      log_p += (alpha[i] - 1.0) * log (theta[i]);
    }

  for (i = 0; i < K; i++)
    {
      sum_alpha += alpha[i];
    }

  log_p += gsl_sf_lngamma (sum_alpha);

  for (i = 0; i < K; i++)
    {
      log_p -= gsl_sf_lngamma (alpha[i]);
    }

  return log_p;
}