1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* randist/gamma.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
static double gamma_large (const gsl_rng * r, const double a);
static double gamma_frac (const gsl_rng * r, const double a);
/* The Gamma distribution of order a>0 is defined by:
p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx
for x>0. If X and Y are independent gamma-distributed random
variables of order a1 and a2 with the same scale parameter b, then
X+Y has gamma distribution of order a1+a2.
The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */
double
gsl_ran_gamma_knuth (const gsl_rng * r, const double a, const double b)
{
/* assume a > 0 */
unsigned int na = floor (a);
if(a >= UINT_MAX)
{
return b * (gamma_large (r, floor (a)) + gamma_frac (r, a - floor (a)));
}
else if (a == na)
{
return b * gsl_ran_gamma_int (r, na);
}
else if (na == 0)
{
return b * gamma_frac (r, a);
}
else
{
return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ;
}
}
double
gsl_ran_gamma_int (const gsl_rng * r, const unsigned int a)
{
if (a < 12)
{
unsigned int i;
double prod = 1;
for (i = 0; i < a; i++)
{
prod *= gsl_rng_uniform_pos (r);
}
/* Note: for 12 iterations we are safe against underflow, since
the smallest positive random number is O(2^-32). This means
the smallest possible product is 2^(-12*32) = 10^-116 which
is within the range of double precision. */
return -log (prod);
}
else
{
return gamma_large (r, (double) a);
}
}
static double
gamma_large (const gsl_rng * r, const double a)
{
/* Works only if a > 1, and is most efficient if a is large
This algorithm, reported in Knuth, is attributed to Ahrens. A
faster one, we are told, can be found in: J. H. Ahrens and
U. Dieter, Computing 12 (1974) 223-246. */
double sqa, x, y, v;
sqa = sqrt (2 * a - 1);
do
{
do
{
y = tan (M_PI * gsl_rng_uniform (r));
x = sqa * y + a - 1;
}
while (x <= 0);
v = gsl_rng_uniform (r);
}
while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y));
return x;
}
static double
gamma_frac (const gsl_rng * r, const double a)
{
/* This is exercise 16 from Knuth; see page 135, and the solution is
on page 551. */
double p, q, x, u, v;
if (a == 0) {
return 0;
}
p = M_E / (a + M_E);
do
{
u = gsl_rng_uniform (r);
v = gsl_rng_uniform_pos (r);
if (u < p)
{
x = exp ((1 / a) * log (v));
q = exp (-x);
}
else
{
x = 1 - log (v);
q = exp ((a - 1) * log (x));
}
}
while (gsl_rng_uniform (r) >= q);
return x;
}
double
gsl_ran_gamma_pdf (const double x, const double a, const double b)
{
if (x < 0)
{
return 0 ;
}
else if (x == 0)
{
if (a == 1)
return 1/b ;
else
return 0 ;
}
else if (a == 1)
{
return exp(-x/b)/b ;
}
else
{
double p;
double lngamma = gsl_sf_lngamma (a);
p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b;
return p;
}
}
/* New version based on Marsaglia and Tsang, "A Simple Method for
* generating gamma variables", ACM Transactions on Mathematical
* Software, Vol 26, No 3 (2000), p363-372.
*
* Implemented by J.D.Lamb@btinternet.com, minor modifications for GSL
* by Brian Gough
*/
double
gsl_ran_gamma_mt (const gsl_rng * r, const double a, const double b)
{
return gsl_ran_gamma (r, a, b);
}
double
gsl_ran_gamma (const gsl_rng * r, const double a, const double b)
{
/* assume a > 0 */
if (a < 1)
{
double u = gsl_rng_uniform_pos (r);
return gsl_ran_gamma (r, 1.0 + a, b) * pow (u, 1.0 / a);
}
{
double x, v, u;
double d = a - 1.0 / 3.0;
double c = (1.0 / 3.0) / sqrt (d);
while (1)
{
do
{
x = gsl_ran_gaussian_ziggurat (r, 1.0);
v = 1.0 + c * x;
}
while (v <= 0);
v = v * v * v;
u = gsl_rng_uniform_pos (r);
if (u < 1 - 0.0331 * x * x * x * x)
break;
if (log (u) < 0.5 * x * x + d * (1 - v + log (v)))
break;
}
return b * d * v;
}
}
|