1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
/* randist/gauss.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 James Theiler, Brian Gough
* Copyright (C) 2006 Charles Karney
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
/* Of the two methods provided below, I think the Polar method is more
* efficient, but only when you are actually producing two random
* deviates. We don't produce two, because then we'd have to save one
* in a static variable for the next call, and that would screws up
* re-entrant or threaded code, so we only produce one. This makes
* the Ratio method suddenly more appealing.
*
* [Added by Charles Karney] We use Leva's implementation of the Ratio
* method which avoids calling log() nearly all the time and makes the
* Ratio method faster than the Polar method (when it produces just one
* result per call). Timing per call (gcc -O2 on 866MHz Pentium,
* average over 10^8 calls)
*
* Polar method: 660 ns
* Ratio method: 368 ns
*
*/
/* Polar (Box-Mueller) method; See Knuth v2, 3rd ed, p122 */
double
gsl_ran_gaussian (const gsl_rng * r, const double sigma)
{
double x, y, r2;
do
{
/* choose x,y in uniform square (-1,-1) to (+1,+1) */
x = -1 + 2 * gsl_rng_uniform_pos (r);
y = -1 + 2 * gsl_rng_uniform_pos (r);
/* see if it is in the unit circle */
r2 = x * x + y * y;
}
while (r2 > 1.0 || r2 == 0);
/* Box-Muller transform */
return sigma * y * sqrt (-2.0 * log (r2) / r2);
}
/* Ratio method (Kinderman-Monahan); see Knuth v2, 3rd ed, p130.
* K+M, ACM Trans Math Software 3 (1977) 257-260.
*
* [Added by Charles Karney] This is an implementation of Leva's
* modifications to the original K+M method; see:
* J. L. Leva, ACM Trans Math Software 18 (1992) 449-453 and 454-455. */
double
gsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma)
{
double u, v, x, y, Q;
const double s = 0.449871; /* Constants from Leva */
const double t = -0.386595;
const double a = 0.19600;
const double b = 0.25472;
const double r1 = 0.27597;
const double r2 = 0.27846;
do /* This loop is executed 1.369 times on average */
{
/* Generate a point P = (u, v) uniform in a rectangle enclosing
the K+M region v^2 <= - 4 u^2 log(u). */
/* u in (0, 1] to avoid singularity at u = 0 */
u = 1 - gsl_rng_uniform (r);
/* v is in the asymmetric interval [-0.5, 0.5). However v = -0.5
is rejected in the last part of the while clause. The
resulting normal deviate is strictly symmetric about 0
(provided that v is symmetric once v = -0.5 is excluded). */
v = gsl_rng_uniform (r) - 0.5;
/* Constant 1.7156 > sqrt(8/e) (for accuracy); but not by too
much (for efficiency). */
v *= 1.7156;
/* Compute Leva's quadratic form Q */
x = u - s;
y = fabs (v) - t;
Q = x * x + y * (a * y - b * x);
/* Accept P if Q < r1 (Leva) */
/* Reject P if Q > r2 (Leva) */
/* Accept if v^2 <= -4 u^2 log(u) (K+M) */
/* This final test is executed 0.012 times on average. */
}
while (Q >= r1 && (Q > r2 || v * v > -4 * u * u * log (u)));
return sigma * (v / u); /* Return slope */
}
double
gsl_ran_gaussian_pdf (const double x, const double sigma)
{
double u = x / fabs (sigma);
double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);
return p;
}
double
gsl_ran_ugaussian (const gsl_rng * r)
{
return gsl_ran_gaussian (r, 1.0);
}
double
gsl_ran_ugaussian_ratio_method (const gsl_rng * r)
{
return gsl_ran_gaussian_ratio_method (r, 1.0);
}
double
gsl_ran_ugaussian_pdf (const double x)
{
return gsl_ran_gaussian_pdf (x, 1.0);
}
|