1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* gauss.c - gaussian random numbers, using the Ziggurat method
*
* Copyright (C) 2005 Jochen Voss.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this library; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* This routine is based on the following article, with a couple of
* modifications which simplify the implementation.
*
* George Marsaglia, Wai Wan Tsang
* The Ziggurat Method for Generating Random Variables
* Journal of Statistical Software, vol. 5 (2000), no. 8
* http://www.jstatsoft.org/v05/i08/
*
* The modifications are:
*
* 1) use 128 steps instead of 256 to decrease the amount of static
* data necessary.
*
* 2) use an acceptance sampling from an exponential wedge
* exp(-R*(x-R/2)) for the tail of the base strip to simplify the
* implementation. The area of exponential wedge is used in
* calculating 'v' and the coefficients in ziggurat table, so the
* coefficients differ slightly from those in the Marsaglia and Tsang
* paper.
*
* See also Leong et al, "A Comment on the Implementation of the
* Ziggurat Method", Journal of Statistical Software, vol 5 (2005), no 7.
*
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
/* position of right-most step */
#define PARAM_R 3.44428647676
/* tabulated values for the heigt of the Ziggurat levels */
static const double ytab[128] = {
1, 0.963598623011, 0.936280813353, 0.913041104253,
0.892278506696, 0.873239356919, 0.855496407634, 0.838778928349,
0.822902083699, 0.807732738234, 0.793171045519, 0.779139726505,
0.765577436082, 0.752434456248, 0.739669787677, 0.727249120285,
0.715143377413, 0.703327646455, 0.691780377035, 0.68048276891,
0.669418297233, 0.65857233912, 0.647931876189, 0.637485254896,
0.62722199145, 0.617132611532, 0.607208517467, 0.597441877296,
0.587825531465, 0.578352913803, 0.569017984198, 0.559815170911,
0.550739320877, 0.541785656682, 0.532949739145, 0.524227434628,
0.515614886373, 0.507108489253, 0.498704867478, 0.490400854812,
0.482193476986, 0.47407993601, 0.466057596125, 0.458123971214,
0.450276713467, 0.442513603171, 0.434832539473, 0.427231532022,
0.419708693379, 0.41226223212, 0.404890446548, 0.397591718955,
0.390364510382, 0.383207355816, 0.376118859788, 0.369097692334,
0.362142585282, 0.355252328834, 0.348425768415, 0.341661801776,
0.334959376311, 0.328317486588, 0.321735172063, 0.31521151497,
0.308745638367, 0.302336704338, 0.29598391232, 0.289686497571,
0.283443729739, 0.27725491156, 0.271119377649, 0.265036493387,
0.259005653912, 0.253026283183, 0.247097833139, 0.241219782932,
0.235391638239, 0.229612930649, 0.223883217122, 0.218202079518,
0.212569124201, 0.206983981709, 0.201446306496, 0.195955776745,
0.190512094256, 0.185114984406, 0.179764196185, 0.174459502324,
0.169200699492, 0.1639876086, 0.158820075195, 0.153697969964,
0.148621189348, 0.143589656295, 0.138603321143, 0.133662162669,
0.128766189309, 0.123915440582, 0.119109988745, 0.114349940703,
0.10963544023, 0.104966670533, 0.100343857232, 0.0957672718266,
0.0912372357329, 0.0867541250127, 0.082318375932, 0.0779304915295,
0.0735910494266, 0.0693007111742, 0.065060233529, 0.0608704821745,
0.056732448584, 0.05264727098, 0.0486162607163, 0.0446409359769,
0.0407230655415, 0.0368647267386, 0.0330683839378, 0.0293369977411,
0.0256741818288, 0.0220844372634, 0.0185735200577, 0.0151490552854,
0.0118216532614, 0.00860719483079, 0.00553245272614, 0.00265435214565
};
/* tabulated values for 2^24 times x[i]/x[i+1],
* used to accept for U*x[i+1]<=x[i] without any floating point operations */
static const unsigned long ktab[128] = {
0, 12590644, 14272653, 14988939,
15384584, 15635009, 15807561, 15933577,
16029594, 16105155, 16166147, 16216399,
16258508, 16294295, 16325078, 16351831,
16375291, 16396026, 16414479, 16431002,
16445880, 16459343, 16471578, 16482744,
16492970, 16502368, 16511031, 16519039,
16526459, 16533352, 16539769, 16545755,
16551348, 16556584, 16561493, 16566101,
16570433, 16574511, 16578353, 16581977,
16585398, 16588629, 16591685, 16594575,
16597311, 16599901, 16602354, 16604679,
16606881, 16608968, 16610945, 16612818,
16614592, 16616272, 16617861, 16619363,
16620782, 16622121, 16623383, 16624570,
16625685, 16626730, 16627708, 16628619,
16629465, 16630248, 16630969, 16631628,
16632228, 16632768, 16633248, 16633671,
16634034, 16634340, 16634586, 16634774,
16634903, 16634972, 16634980, 16634926,
16634810, 16634628, 16634381, 16634066,
16633680, 16633222, 16632688, 16632075,
16631380, 16630598, 16629726, 16628757,
16627686, 16626507, 16625212, 16623794,
16622243, 16620548, 16618698, 16616679,
16614476, 16612071, 16609444, 16606571,
16603425, 16599973, 16596178, 16591995,
16587369, 16582237, 16576520, 16570120,
16562917, 16554758, 16545450, 16534739,
16522287, 16507638, 16490152, 16468907,
16442518, 16408804, 16364095, 16301683,
16207738, 16047994, 15704248, 15472926
};
/* tabulated values of 2^{-24}*x[i] */
static const double wtab[128] = {
1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08,
3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08,
3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08,
4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08,
5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08,
5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08,
5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08,
6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08,
6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08,
6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08,
7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08,
7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08,
7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08,
8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08,
8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08,
8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08,
9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08,
9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08,
9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07,
1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07,
1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07,
1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07,
1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07,
1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07,
1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07,
1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07,
1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07,
1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07,
1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07,
1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07,
1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07,
1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07
};
double
gsl_ran_gaussian_ziggurat (const gsl_rng * r, const double sigma)
{
unsigned long int i, j;
int sign;
double x, y;
const unsigned long int range = r->type->max - r->type->min;
const unsigned long int offset = r->type->min;
while (1)
{
if (range >= 0xFFFFFFFF)
{
unsigned long int k = gsl_rng_get(r) - offset;
i = (k & 0xFF);
j = (k >> 8) & 0xFFFFFF;
}
else if (range >= 0x00FFFFFF)
{
unsigned long int k1 = gsl_rng_get(r) - offset;
unsigned long int k2 = gsl_rng_get(r) - offset;
i = (k1 & 0xFF);
j = (k2 & 0x00FFFFFF);
}
else
{
i = gsl_rng_uniform_int (r, 256); /* choose the step */
j = gsl_rng_uniform_int (r, 16777216); /* sample from 2^24 */
}
sign = (i & 0x80) ? +1 : -1;
i &= 0x7f;
x = j * wtab[i];
if (j < ktab[i])
break;
if (i < 127)
{
double y0, y1, U1;
y0 = ytab[i];
y1 = ytab[i + 1];
U1 = gsl_rng_uniform (r);
y = y1 + (y0 - y1) * U1;
}
else
{
double U1, U2;
U1 = 1.0 - gsl_rng_uniform (r);
U2 = gsl_rng_uniform (r);
x = PARAM_R - log (U1) / PARAM_R;
y = exp (-PARAM_R * (x - 0.5 * PARAM_R)) * U2;
}
if (y < exp (-0.5 * x * x))
break;
}
return sign * sigma * x;
}
|