1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/* randist/mvgauss.c
*
* Copyright (C) 2016 Timothée Flutre, Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_statistics.h>
static int multivar_vcov (const double data[], size_t d, size_t tda, size_t n,
double vcov[], size_t tda2);
/* Generate a random vector from a multivariate Gaussian distribution using
* the Cholesky decomposition of the variance-covariance matrix, following
* "Computational Statistics" from Gentle (2009), section 7.4.
*
* mu mean vector (dimension d)
* L matrix resulting from the Cholesky decomposition of
* variance-covariance matrix Sigma = L L^T (dimension d x d)
* result output vector (dimension d)
*/
int
gsl_ran_multivariate_gaussian (const gsl_rng * r,
const gsl_vector * mu,
const gsl_matrix * L,
gsl_vector * result)
{
const size_t M = L->size1;
const size_t N = L->size2;
if (M != N)
{
GSL_ERROR("requires square matrix", GSL_ENOTSQR);
}
else if (mu->size != M)
{
GSL_ERROR("incompatible dimension of mean vector with variance-covariance matrix", GSL_EBADLEN);
}
else if (result->size != M)
{
GSL_ERROR("incompatible dimension of result vector", GSL_EBADLEN);
}
else
{
size_t i;
for (i = 0; i < M; ++i)
gsl_vector_set(result, i, gsl_ran_ugaussian(r));
gsl_blas_dtrmv(CblasLower, CblasNoTrans, CblasNonUnit, L, result);
gsl_vector_add(result, mu);
return GSL_SUCCESS;
}
}
/* Compute the log of the probability density function at a given quantile
* vector for a multivariate Gaussian distribution using the Cholesky
* decomposition of the variance-covariance matrix.
*
* x vector of quantiles (dimension d)
* mu mean vector (dimension d)
* L matrix resulting from the Cholesky decomposition of
* variance-covariance matrix Sigma = L L^T (dimension d x d)
* result output of the density (dimension 1)
* work vector used for intermediate computations (dimension d)
*/
int
gsl_ran_multivariate_gaussian_log_pdf (const gsl_vector * x,
const gsl_vector * mu,
const gsl_matrix * L,
double * result,
gsl_vector * work)
{
const size_t M = L->size1;
const size_t N = L->size2;
if (M != N)
{
GSL_ERROR("requires square matrix", GSL_ENOTSQR);
}
else if (mu->size != M)
{
GSL_ERROR("incompatible dimension of mean vector with variance-covariance matrix", GSL_EBADLEN);
}
else if (x->size != M)
{
GSL_ERROR("incompatible dimension of quantile vector", GSL_EBADLEN);
}
else if (work->size != M)
{
GSL_ERROR("incompatible dimension of work vector", GSL_EBADLEN);
}
else
{
size_t i;
double quadForm; /* (x - mu)' Sigma^{-1} (x - mu) */
double logSqrtDetSigma; /* log [ sqrt(|Sigma|) ] */
/* compute: work = x - mu */
for (i = 0; i < M; ++i)
{
double xi = gsl_vector_get(x, i);
double mui = gsl_vector_get(mu, i);
gsl_vector_set(work, i, xi - mui);
}
/* compute: work = L^{-1} * (x - mu) */
gsl_blas_dtrsv(CblasLower, CblasNoTrans, CblasNonUnit, L, work);
/* compute: quadForm = (x - mu)' Sigma^{-1} (x - mu) */
gsl_blas_ddot(work, work, &quadForm);
/* compute: log [ sqrt(|Sigma|) ] = sum_i log L_{ii} */
logSqrtDetSigma = 0.0;
for (i = 0; i < M; ++i)
{
double Lii = gsl_matrix_get(L, i, i);
logSqrtDetSigma += log(Lii);
}
*result = -0.5*quadForm - logSqrtDetSigma - 0.5*M*log(2.0*M_PI);
return GSL_SUCCESS;
}
}
int
gsl_ran_multivariate_gaussian_pdf (const gsl_vector * x,
const gsl_vector * mu,
const gsl_matrix * L,
double * result,
gsl_vector * work)
{
double logpdf;
int status = gsl_ran_multivariate_gaussian_log_pdf(x, mu, L, &logpdf, work);
if (status == GSL_SUCCESS)
*result = exp(logpdf);
return status;
}
/* Compute the maximum-likelihood estimate of the mean vector of samples
* from a multivariate Gaussian distribution.
*
* Example from R (GPL): http://www.r-project.org/
* (samples <- matrix(c(4.348817, 2.995049, -3.793431, 4.711934, 1.190864, -1.357363), nrow=3, ncol=2))
* colMeans(samples) # 1.183478 1.515145
*/
int
gsl_ran_multivariate_gaussian_mean (const gsl_matrix * X, gsl_vector * mu_hat)
{
const size_t M = X->size1;
const size_t N = X->size2;
if (N != mu_hat->size)
{
GSL_ERROR("mu_hat vector has wrong size", GSL_EBADLEN);
}
else
{
size_t j;
for (j = 0; j < N; ++j)
{
gsl_vector_const_view c = gsl_matrix_const_column(X, j);
double mean = gsl_stats_mean(c.vector.data, c.vector.stride, M);
gsl_vector_set(mu_hat, j, mean);
}
return GSL_SUCCESS;
}
}
/* Compute the maximum-likelihood estimate of the variance-covariance matrix
* of samples from a multivariate Gaussian distribution.
*/
int
gsl_ran_multivariate_gaussian_vcov (const gsl_matrix * X, gsl_matrix * sigma_hat)
{
const size_t M = X->size1;
const size_t N = X->size2;
if (sigma_hat->size1 != sigma_hat->size2)
{
GSL_ERROR("sigma_hat must be a square matrix", GSL_ENOTSQR);
}
else if (N != sigma_hat->size1)
{
GSL_ERROR("sigma_hat does not match X matrix dimensions", GSL_EBADLEN);
}
else
{
return multivar_vcov (X->data, N, X->tda, M, sigma_hat->data, sigma_hat->tda);
}
}
/* Example from R (GPL): http://www.r-project.org/
* (samples <- matrix(c(4.348817, 2.995049, -3.793431, 4.711934, 1.190864, -1.357363), nrow=3, ncol=2))
* cov(samples) # 19.03539 11.91384 \n 11.91384 9.28796
*/
static int
multivar_vcov (const double data[], size_t d, size_t tda, size_t n,
double vcov[], size_t tda2)
{
size_t j1 = 0, j2 = 0;
for (j1 = 0; j1 < d; ++j1)
{
vcov[j1 * tda2 + j1] = gsl_stats_variance(&(data[j1]), tda, n);
for (j2 = j1 + 1; j2 < d; ++j2)
{
vcov[j1 * tda2 + j2] = gsl_stats_covariance(&(data[j1]), tda,
&(data[j2]), tda, n);
vcov[j2 * tda2 + j1] = vcov[j1 * tda2 + j2];
}
}
return GSL_SUCCESS;
}
|