1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*
* Implement Heap sort -- direct and indirect sorting
* Based on descriptions in Sedgewick "Algorithms in C"
*
* Copyright (C) 1999 Thomas Walter
*
* 18 February 2000: Modified for GSL by Brian Gough
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 3, or (at your option) any
* later version.
*
* This source is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
static inline void FUNCTION (my, downheap) (BASE * data, const size_t stride, const size_t N, size_t k);
static inline void FUNCTION (my, downheap2) (BASE * data1, const size_t stride1, BASE * data2, const size_t stride2, const size_t N, size_t k);
static inline void
FUNCTION (my, downheap) (BASE * data, const size_t stride, const size_t N, size_t k)
{
BASE v = data[k * stride];
while (k <= N / 2)
{
size_t j = 2 * k;
if (j < N && data[j * stride] < data[(j + 1) * stride])
{
j++;
}
if (!(v < data[j * stride])) /* avoid infinite loop if nan */
{
break;
}
data[k * stride] = data[j * stride];
k = j;
}
data[k * stride] = v;
}
static inline void
FUNCTION (my, downheap2) (BASE * data1, const size_t stride1, BASE * data2, const size_t stride2, const size_t N, size_t k)
{
BASE v1 = data1[k * stride1];
BASE v2 = data2[k * stride2];
while (k <= N / 2)
{
size_t j = 2 * k;
if (j < N && data1[j * stride1] < data1[(j + 1) * stride1])
{
j++;
}
if (!(v1 < data1[j * stride1])) /* avoid infinite loop if nan */
{
break;
}
data1[k * stride1] = data1[j * stride1];
data2[k * stride2] = data2[j * stride2];
k = j;
}
data1[k * stride1] = v1;
data2[k * stride2] = v2;
}
void
TYPE (gsl_sort) (BASE * data, const size_t stride, const size_t n)
{
size_t N;
size_t k;
if (n == 0)
{
return; /* No data to sort */
}
/* We have n_data elements, last element is at 'n_data-1', first at
'0' Set N to the last element number. */
N = n - 1;
k = N / 2;
k++; /* Compensate the first use of 'k--' */
do
{
k--;
FUNCTION (my, downheap) (data, stride, N, k);
}
while (k > 0);
while (N > 0)
{
/* first swap the elements */
BASE tmp = data[0 * stride];
data[0 * stride] = data[N * stride];
data[N * stride] = tmp;
/* then process the heap */
N--;
FUNCTION (my, downheap) (data, stride, N, 0);
}
}
void
TYPE (gsl_sort_vector) (TYPE (gsl_vector) * v)
{
TYPE (gsl_sort) (v->data, v->stride, v->size) ;
}
void
TYPE (gsl_sort2) (BASE * data1, const size_t stride1, BASE * data2, const size_t stride2, const size_t n)
{
size_t N;
size_t k;
if (n == 0)
{
return; /* No data to sort */
}
/* We have n_data elements, last element is at 'n_data-1', first at
'0' Set N to the last element number. */
N = n - 1;
k = N / 2;
k++; /* Compensate the first use of 'k--' */
do
{
k--;
FUNCTION (my, downheap2) (data1, stride1, data2, stride2, N, k);
}
while (k > 0);
while (N > 0)
{
/* first swap the elements */
BASE tmp;
tmp = data1[0 * stride1];
data1[0 * stride1] = data1[N * stride1];
data1[N * stride1] = tmp;
tmp = data2[0 * stride2];
data2[0 * stride2] = data2[N * stride2];
data2[N * stride2] = tmp;
/* then process the heap */
N--;
FUNCTION (my, downheap2) (data1, stride1, data2, stride2, N, 0);
}
}
void
TYPE (gsl_sort_vector2) (TYPE (gsl_vector) * v1, TYPE (gsl_vector) * v2)
{
TYPE (gsl_sort2) (v1->data, v1->stride, v2->data, v2->stride, v1->size) ;
}
|