1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* spdgemm.c
*
* Copyright (C) 2014 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_spmatrix.h>
#include <gsl/gsl_spblas.h>
#include <gsl/gsl_errno.h>
/*
gsl_spblas_dgemm()
Multiply two sparse matrices
Inputs: alpha - scalar factor
A - sparse matrix
B - sparse matrix
C - (output) C = alpha * A * B
Return: success or error
Notes:
1) based on CSparse routine cs_multiply
*/
int
gsl_spblas_dgemm(const double alpha, const gsl_spmatrix *A,
const gsl_spmatrix *B, gsl_spmatrix *C)
{
if (A->size2 != B->size1 || A->size1 != C->size1 || B->size2 != C->size2)
{
GSL_ERROR("matrix dimensions do not match", GSL_EBADLEN);
}
else if (A->sptype != B->sptype || A->sptype != C->sptype)
{
GSL_ERROR("matrix storage formats do not match", GSL_EINVAL);
}
else if (!GSL_SPMATRIX_ISCCS(A))
{
GSL_ERROR("compressed column format required", GSL_EINVAL);
}
else
{
int status = GSL_SUCCESS;
const size_t M = A->size1;
const size_t N = B->size2;
size_t *Bi = B->i;
size_t *Bp = B->p;
double *Bd = B->data;
size_t *w = (size_t *) A->work; /* workspace of length M */
double *x = (double *) C->work; /* workspace of length M */
size_t *Cp, *Ci;
double *Cd;
size_t j, p;
size_t nz = 0;
if (C->nzmax < A->nz + B->nz)
{
status = gsl_spmatrix_realloc(A->nz + B->nz, C);
if (status)
{
GSL_ERROR("unable to realloc matrix C", status);
}
}
/* initialize workspace to 0 */
for (j = 0; j < M; ++j)
w[j] = 0;
Cp = C->p;
Ci = C->i;
Cd = C->data;
for (j = 0; j < N; ++j)
{
if (nz + M > C->nzmax)
{
status = gsl_spmatrix_realloc(2 * C->nzmax + M, C);
if (status)
{
GSL_ERROR("unable to realloc matrix C", status);
}
/* these pointers could have changed due to reallocation */
Ci = C->i;
Cd = C->data;
}
Cp[j] = nz; /* column j of C starts here */
for (p = Bp[j]; p < Bp[j + 1]; ++p)
{
nz = gsl_spblas_scatter(A, Bi[p], Bd[p], w, x, j + 1, C, nz);
}
for (p = Cp[j]; p < nz; ++p)
Cd[p] = x[Ci[p]];
}
Cp[N] = nz;
C->nz = nz;
/* scale by alpha */
gsl_spmatrix_scale(C, alpha);
return status;
}
} /* gsl_spblas_dgemm() */
/*
gsl_spblas_scatter()
Keep a running total x -> x + alpha*A(:,j) for adding matrices together in CCS,
which will eventually be stored in C(:,j)
When a new non-zero element with row index i is found, update C->i with
the row index. C->data is updated only by the calling function after all
matrices have been added via this function.
Inputs: A - sparse matrix m-by-n
j - column index
alpha - scalar factor
w - keeps track which rows of column j have been added to C;
initialize to 0 prior to first call
x - column vector of length m
mark -
C - output matrix whose jth column will be added to A(:,j)
nz - (input/output) number of non-zeros in matrix C
Notes:
1) This function is designed to be called successively when adding multiple
matrices together. Column j of C is stored contiguously as per CCS but not
necessarily in order - ie: the row indices C->i may not be in ascending order.
2) based on CSparse routine cs_scatter
*/
size_t
gsl_spblas_scatter(const gsl_spmatrix *A, const size_t j, const double alpha,
size_t *w, double *x, const size_t mark, gsl_spmatrix *C,
size_t nz)
{
size_t p;
size_t *Ai = A->i;
size_t *Ap = A->p;
double *Ad = A->data;
size_t *Ci = C->i;
for (p = Ap[j]; p < Ap[j + 1]; ++p)
{
size_t i = Ai[p]; /* A(i,j) is nonzero */
if (w[i] < mark) /* check if row i has been stored in column j yet */
{
w[i] = mark; /* i is new entry in column j */
Ci[nz++] = i; /* add i to pattern of C(:,j) */
x[i] = alpha * Ad[p]; /* x(i) = alpha * A(i,j) */
}
else /* this (i,j) exists in C from a previous call */
{
x[i] += alpha * Ad[p]; /* add alpha*A(i,j) to C(i,j) */
}
}
return (nz) ;
} /* gsl_spblas_scatter() */
|