1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
|
/* specfunc/airy.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_trig.h>
#include <gsl/gsl_sf_airy.h>
#include "error.h"
#include "check.h"
#include "chebyshev.h"
#include "cheb_eval_mode.c"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/* chebyshev expansions for Airy modulus and phase
based on SLATEC r9aimp()
Series for AM21 on the interval -1.25000D-01 to 0.
with weighted error 2.89E-17
log weighted error 16.54
significant figures required 14.15
decimal places required 17.34
Series for ATH1 on the interval -1.25000D-01 to 0.
with weighted error 2.53E-17
log weighted error 16.60
significant figures required 15.15
decimal places required 17.38
Series for AM22 on the interval -1.00000D+00 to -1.25000D-01
with weighted error 2.99E-17
log weighted error 16.52
significant figures required 14.57
decimal places required 17.28
Series for ATH2 on the interval -1.00000D+00 to -1.25000D-01
with weighted error 2.57E-17
log weighted error 16.59
significant figures required 15.07
decimal places required 17.34
*/
static double am21_data[37] = {
0.0065809191761485,
0.0023675984685722,
0.0001324741670371,
0.0000157600904043,
0.0000027529702663,
0.0000006102679017,
0.0000001595088468,
0.0000000471033947,
0.0000000152933871,
0.0000000053590722,
0.0000000020000910,
0.0000000007872292,
0.0000000003243103,
0.0000000001390106,
0.0000000000617011,
0.0000000000282491,
0.0000000000132979,
0.0000000000064188,
0.0000000000031697,
0.0000000000015981,
0.0000000000008213,
0.0000000000004296,
0.0000000000002284,
0.0000000000001232,
0.0000000000000675,
0.0000000000000374,
0.0000000000000210,
0.0000000000000119,
0.0000000000000068,
0.0000000000000039,
0.0000000000000023,
0.0000000000000013,
0.0000000000000008,
0.0000000000000005,
0.0000000000000003,
0.0000000000000001,
0.0000000000000001
};
static cheb_series am21_cs = {
am21_data,
36,
-1, 1,
20
};
static double ath1_data[36] = {
-0.07125837815669365,
-0.00590471979831451,
-0.00012114544069499,
-0.00000988608542270,
-0.00000138084097352,
-0.00000026142640172,
-0.00000006050432589,
-0.00000001618436223,
-0.00000000483464911,
-0.00000000157655272,
-0.00000000055231518,
-0.00000000020545441,
-0.00000000008043412,
-0.00000000003291252,
-0.00000000001399875,
-0.00000000000616151,
-0.00000000000279614,
-0.00000000000130428,
-0.00000000000062373,
-0.00000000000030512,
-0.00000000000015239,
-0.00000000000007758,
-0.00000000000004020,
-0.00000000000002117,
-0.00000000000001132,
-0.00000000000000614,
-0.00000000000000337,
-0.00000000000000188,
-0.00000000000000105,
-0.00000000000000060,
-0.00000000000000034,
-0.00000000000000020,
-0.00000000000000011,
-0.00000000000000007,
-0.00000000000000004,
-0.00000000000000002
};
static cheb_series ath1_cs = {
ath1_data,
35,
-1, 1,
15
};
static double am22_data[33] = {
-0.01562844480625341,
0.00778336445239681,
0.00086705777047718,
0.00015696627315611,
0.00003563962571432,
0.00000924598335425,
0.00000262110161850,
0.00000079188221651,
0.00000025104152792,
0.00000008265223206,
0.00000002805711662,
0.00000000976821090,
0.00000000347407923,
0.00000000125828132,
0.00000000046298826,
0.00000000017272825,
0.00000000006523192,
0.00000000002490471,
0.00000000000960156,
0.00000000000373448,
0.00000000000146417,
0.00000000000057826,
0.00000000000022991,
0.00000000000009197,
0.00000000000003700,
0.00000000000001496,
0.00000000000000608,
0.00000000000000248,
0.00000000000000101,
0.00000000000000041,
0.00000000000000017,
0.00000000000000007,
0.00000000000000002
};
static cheb_series am22_cs = {
am22_data,
32,
-1, 1,
15
};
static double ath2_data[32] = {
0.00440527345871877,
-0.03042919452318455,
-0.00138565328377179,
-0.00018044439089549,
-0.00003380847108327,
-0.00000767818353522,
-0.00000196783944371,
-0.00000054837271158,
-0.00000016254615505,
-0.00000005053049981,
-0.00000001631580701,
-0.00000000543420411,
-0.00000000185739855,
-0.00000000064895120,
-0.00000000023105948,
-0.00000000008363282,
-0.00000000003071196,
-0.00000000001142367,
-0.00000000000429811,
-0.00000000000163389,
-0.00000000000062693,
-0.00000000000024260,
-0.00000000000009461,
-0.00000000000003716,
-0.00000000000001469,
-0.00000000000000584,
-0.00000000000000233,
-0.00000000000000093,
-0.00000000000000037,
-0.00000000000000015,
-0.00000000000000006,
-0.00000000000000002
};
static cheb_series ath2_cs = {
ath2_data,
31,
-1, 1,
16
};
/* Airy modulus and phase for x < -1 */
static
int
airy_mod_phase(const double x, gsl_mode_t mode, gsl_sf_result * mod, gsl_sf_result * phase)
{
gsl_sf_result result_m;
gsl_sf_result result_p;
double m, p;
double sqx;
if(x < -2.0) {
double z = 16.0/(x*x*x) + 1.0;
cheb_eval_mode_e(&am21_cs, z, mode, &result_m);
cheb_eval_mode_e(&ath1_cs, z, mode, &result_p);
}
else if(x <= -1.0) {
double z = (16.0/(x*x*x) + 9.0)/7.0;
cheb_eval_mode_e(&am22_cs, z, mode, &result_m);
cheb_eval_mode_e(&ath2_cs, z, mode, &result_p);
}
else {
mod->val = 0.0;
mod->err = 0.0;
phase->val = 0.0;
phase->err = 0.0;
GSL_ERROR ("x is greater than 1.0", GSL_EDOM);
}
m = 0.3125 + result_m.val;
p = -0.625 + result_p.val;
sqx = sqrt(-x);
mod->val = sqrt(m/sqx);
mod->err = fabs(mod->val) * (GSL_DBL_EPSILON + fabs(result_m.err/result_m.val));
phase->val = M_PI_4 - x*sqx * p;
phase->err = fabs(phase->val) * (GSL_DBL_EPSILON + fabs(result_p.err/result_p.val));
return GSL_SUCCESS;
}
/* Chebyshev series for Ai(x) with x in [-1,1]
based on SLATEC ai(x)
series for aif on the interval -1.00000d+00 to 1.00000d+00
with weighted error 1.09e-19
log weighted error 18.96
significant figures required 17.76
decimal places required 19.44
series for aig on the interval -1.00000d+00 to 1.00000d+00
with weighted error 1.51e-17
log weighted error 16.82
significant figures required 15.19
decimal places required 17.27
*/
static double ai_data_f[9] = {
-0.03797135849666999750,
0.05919188853726363857,
0.00098629280577279975,
0.00000684884381907656,
0.00000002594202596219,
0.00000000006176612774,
0.00000000000010092454,
0.00000000000000012014,
0.00000000000000000010
};
static cheb_series aif_cs = {
ai_data_f,
8,
-1, 1,
8
};
static double ai_data_g[8] = {
0.01815236558116127,
0.02157256316601076,
0.00025678356987483,
0.00000142652141197,
0.00000000457211492,
0.00000000000952517,
0.00000000000001392,
0.00000000000000001
};
static cheb_series aig_cs = {
ai_data_g,
7,
-1, 1,
7
};
/* Chebvyshev series for Bi(x) with x in [-1,1]
based on SLATEC bi(x)
series for bif on the interval -1.00000d+00 to 1.00000d+00
with weighted error 1.88e-19
log weighted error 18.72
significant figures required 17.74
decimal places required 19.20
series for big on the interval -1.00000d+00 to 1.00000d+00
with weighted error 2.61e-17
log weighted error 16.58
significant figures required 15.17
decimal places required 17.03
*/
static double data_bif[9] = {
-0.01673021647198664948,
0.10252335834249445610,
0.00170830925073815165,
0.00001186254546774468,
0.00000004493290701779,
0.00000000010698207143,
0.00000000000017480643,
0.00000000000000020810,
0.00000000000000000018
};
static cheb_series bif_cs = {
data_bif,
8,
-1, 1,
8
};
static double data_big[8] = {
0.02246622324857452,
0.03736477545301955,
0.00044476218957212,
0.00000247080756363,
0.00000000791913533,
0.00000000001649807,
0.00000000000002411,
0.00000000000000002
};
static cheb_series big_cs = {
data_big,
7,
-1, 1,
7
};
/* Chebyshev series for Bi(x) with x in [1,8]
based on SLATEC bi(x)
*/
static double data_bif2[10] = {
0.0998457269381604100,
0.4786249778630055380,
0.0251552119604330118,
0.0005820693885232645,
0.0000074997659644377,
0.0000000613460287034,
0.0000000003462753885,
0.0000000000014288910,
0.0000000000000044962,
0.0000000000000000111
};
static cheb_series bif2_cs = {
data_bif2,
9,
-1, 1,
9
};
static double data_big2[10] = {
0.033305662145514340,
0.161309215123197068,
0.0063190073096134286,
0.0001187904568162517,
0.0000013045345886200,
0.0000000093741259955,
0.0000000000474580188,
0.0000000000001783107,
0.0000000000000005167,
0.0000000000000000011
};
static cheb_series big2_cs = {
data_big2,
9,
-1, 1,
9
};
/* chebyshev for Ai(x) asymptotic factor
based on SLATEC aie()
Series for AIP on the interval 0. to 1.00000D+00
with weighted error 5.10E-17
log weighted error 16.29
significant figures required 14.41
decimal places required 17.06
[GJ] Sun Apr 19 18:14:31 EDT 1998
There was something wrong with these coefficients. I was getting
errors after 3 or 4 digits. So I recomputed this table. Now I get
double precision agreement with Mathematica. But it does not seem
possible that the small differences here would account for the
original discrepancy. There must have been something wrong with my
original usage...
*/
static double data_aip[36] = {
-0.0187519297793867540198,
-0.0091443848250055004725,
0.0009010457337825074652,
-0.0001394184127221491507,
0.0000273815815785209370,
-0.0000062750421119959424,
0.0000016064844184831521,
-0.0000004476392158510354,
0.0000001334635874651668,
-0.0000000420735334263215,
0.0000000139021990246364,
-0.0000000047831848068048,
0.0000000017047897907465,
-0.0000000006268389576018,
0.0000000002369824276612,
-0.0000000000918641139267,
0.0000000000364278543037,
-0.0000000000147475551725,
0.0000000000060851006556,
-0.0000000000025552772234,
0.0000000000010906187250,
-0.0000000000004725870319,
0.0000000000002076969064,
-0.0000000000000924976214,
0.0000000000000417096723,
-0.0000000000000190299093,
0.0000000000000087790676,
-0.0000000000000040927557,
0.0000000000000019271068,
-0.0000000000000009160199,
0.0000000000000004393567,
-0.0000000000000002125503,
0.0000000000000001036735,
-0.0000000000000000509642,
0.0000000000000000252377,
-0.0000000000000000125793
/*
-.0187519297793868
-.0091443848250055,
.0009010457337825,
-.0001394184127221,
.0000273815815785,
-.0000062750421119,
.0000016064844184,
-.0000004476392158,
.0000001334635874,
-.0000000420735334,
.0000000139021990,
-.0000000047831848,
.0000000017047897,
-.0000000006268389,
.0000000002369824,
-.0000000000918641,
.0000000000364278,
-.0000000000147475,
.0000000000060851,
-.0000000000025552,
.0000000000010906,
-.0000000000004725,
.0000000000002076,
-.0000000000000924,
.0000000000000417,
-.0000000000000190,
.0000000000000087,
-.0000000000000040,
.0000000000000019,
-.0000000000000009,
.0000000000000004,
-.0000000000000002,
.0000000000000001,
-.0000000000000000
*/
};
static cheb_series aip_cs = {
data_aip,
35,
-1, 1,
17
};
/* chebyshev for Bi(x) asymptotic factor
based on SLATEC bie()
Series for BIP on the interval 1.25000D-01 to 3.53553D-01
with weighted error 1.91E-17
log weighted error 16.72
significant figures required 15.35
decimal places required 17.41
Series for BIP2 on the interval 0. to 1.25000D-01
with weighted error 1.05E-18
log weighted error 17.98
significant figures required 16.74
decimal places required 18.71
*/
static double data_bip[24] = {
-0.08322047477943447,
0.01146118927371174,
0.00042896440718911,
-0.00014906639379950,
-0.00001307659726787,
0.00000632759839610,
-0.00000042226696982,
-0.00000019147186298,
0.00000006453106284,
-0.00000000784485467,
-0.00000000096077216,
0.00000000070004713,
-0.00000000017731789,
0.00000000002272089,
0.00000000000165404,
-0.00000000000185171,
0.00000000000059576,
-0.00000000000012194,
0.00000000000001334,
0.00000000000000172,
-0.00000000000000145,
0.00000000000000049,
-0.00000000000000011,
0.00000000000000001
};
static cheb_series bip_cs = {
data_bip,
23,
-1, 1,
14
};
static double data_bip2[29] = {
-0.113596737585988679,
0.0041381473947881595,
0.0001353470622119332,
0.0000104273166530153,
0.0000013474954767849,
0.0000001696537405438,
-0.0000000100965008656,
-0.0000000167291194937,
-0.0000000045815364485,
0.0000000003736681366,
0.0000000005766930320,
0.0000000000621812650,
-0.0000000000632941202,
-0.0000000000149150479,
0.0000000000078896213,
0.0000000000024960513,
-0.0000000000012130075,
-0.0000000000003740493,
0.0000000000002237727,
0.0000000000000474902,
-0.0000000000000452616,
-0.0000000000000030172,
0.0000000000000091058,
-0.0000000000000009814,
-0.0000000000000016429,
0.0000000000000005533,
0.0000000000000002175,
-0.0000000000000001737,
-0.0000000000000000010
};
static cheb_series bip2_cs = {
data_bip2,
28,
-1, 1,
10
};
/* assumes x >= 1.0 */
inline static int
airy_aie(const double x, gsl_mode_t mode, gsl_sf_result * result)
{
double sqx = sqrt(x);
double z = 2.0/(x*sqx) - 1.0;
double y = sqrt(sqx);
gsl_sf_result result_c;
cheb_eval_mode_e(&aip_cs, z, mode, &result_c);
result->val = (0.28125 + result_c.val)/y;
result->err = result_c.err/y + GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/* assumes x >= 2.0 */
static int airy_bie(const double x, gsl_mode_t mode, gsl_sf_result * result)
{
const double ATR = 8.7506905708484345;
const double BTR = -2.0938363213560543;
if(x < 4.0) {
double sqx = sqrt(x);
double z = ATR/(x*sqx) + BTR;
double y = sqrt(sqx);
gsl_sf_result result_c;
cheb_eval_mode_e(&bip_cs, z, mode, &result_c);
result->val = (0.625 + result_c.val)/y;
result->err = result_c.err/y + GSL_DBL_EPSILON * fabs(result->val);
}
else {
double sqx = sqrt(x);
double z = 16.0/(x*sqx) - 1.0;
double y = sqrt(sqx);
gsl_sf_result result_c;
cheb_eval_mode_e(&bip2_cs, z, mode, &result_c);
result->val = (0.625 + result_c.val)/y;
result->err = result_c.err/y + GSL_DBL_EPSILON * fabs(result->val);
}
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_airy_Ai_e(const double x, const gsl_mode_t mode, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x < -1.0) {
gsl_sf_result mod;
gsl_sf_result theta;
gsl_sf_result cos_result;
int stat_mp = airy_mod_phase(x, mode, &mod, &theta);
int stat_cos = gsl_sf_cos_err_e(theta.val, theta.err, &cos_result);
result->val = mod.val * cos_result.val;
result->err = fabs(mod.val * cos_result.err) + fabs(cos_result.val * mod.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_mp, stat_cos);
}
else if(x <= 1.0) {
const double z = x*x*x;
gsl_sf_result result_c0;
gsl_sf_result result_c1;
cheb_eval_mode_e(&aif_cs, z, mode, &result_c0);
cheb_eval_mode_e(&aig_cs, z, mode, &result_c1);
result->val = 0.375 + (result_c0.val - x*(0.25 + result_c1.val));
result->err = result_c0.err + fabs(x*result_c1.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
double x32 = x * sqrt(x);
double s = exp(-2.0*x32/3.0);
gsl_sf_result result_aie;
int stat_aie = airy_aie(x, mode, &result_aie);
result->val = result_aie.val * s;
result->err = result_aie.err * s + result->val * x32 * GSL_DBL_EPSILON;
result->err += GSL_DBL_EPSILON * fabs(result->val);
CHECK_UNDERFLOW(result);
return stat_aie;
}
}
int
gsl_sf_airy_Ai_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x < -1.0) {
gsl_sf_result mod;
gsl_sf_result theta;
gsl_sf_result cos_result;
int stat_mp = airy_mod_phase(x, mode, &mod, &theta);
int stat_cos = gsl_sf_cos_err_e(theta.val, theta.err, &cos_result);
result->val = mod.val * cos_result.val;
result->err = fabs(mod.val * cos_result.err) + fabs(cos_result.val * mod.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_mp, stat_cos);
}
else if(x <= 1.0) {
const double z = x*x*x;
gsl_sf_result result_c0;
gsl_sf_result result_c1;
cheb_eval_mode_e(&aif_cs, z, mode, &result_c0);
cheb_eval_mode_e(&aig_cs, z, mode, &result_c1);
result->val = 0.375 + (result_c0.val - x*(0.25 + result_c1.val));
result->err = result_c0.err + fabs(x*result_c1.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
if(x > 0.0) {
const double scale = exp(2.0/3.0 * sqrt(z));
result->val *= scale;
result->err *= scale;
}
return GSL_SUCCESS;
}
else {
return airy_aie(x, mode, result);
}
}
int gsl_sf_airy_Bi_e(const double x, gsl_mode_t mode, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x < -1.0) {
gsl_sf_result mod;
gsl_sf_result theta;
gsl_sf_result sin_result;
int stat_mp = airy_mod_phase(x, mode, &mod, &theta);
int stat_sin = gsl_sf_sin_err_e(theta.val, theta.err, &sin_result);
result->val = mod.val * sin_result.val;
result->err = fabs(mod.val * sin_result.err) + fabs(sin_result.val * mod.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_mp, stat_sin);
}
else if(x < 1.0) {
const double z = x*x*x;
gsl_sf_result result_c0;
gsl_sf_result result_c1;
cheb_eval_mode_e(&bif_cs, z, mode, &result_c0);
cheb_eval_mode_e(&big_cs, z, mode, &result_c1);
result->val = 0.625 + result_c0.val + x*(0.4375 + result_c1.val);
result->err = result_c0.err + fabs(x * result_c1.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x <= 2.0) {
const double z = (2.0*x*x*x - 9.0)/7.0;
gsl_sf_result result_c0;
gsl_sf_result result_c1;
cheb_eval_mode_e(&bif2_cs, z, mode, &result_c0);
cheb_eval_mode_e(&big2_cs, z, mode, &result_c1);
result->val = 1.125 + result_c0.val + x*(0.625 + result_c1.val);
result->err = result_c0.err + fabs(x * result_c1.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
const double y = 2.0*x*sqrt(x)/3.0;
const double s = exp(y);
if(y > GSL_LOG_DBL_MAX - 1.0) {
OVERFLOW_ERROR(result);
}
else {
gsl_sf_result result_bie;
int stat_bie = airy_bie(x, mode, &result_bie);
result->val = result_bie.val * s;
result->err = result_bie.err * s + fabs(1.5*y * (GSL_DBL_EPSILON * result->val));
result->err += GSL_DBL_EPSILON * fabs(result->val);
return stat_bie;
}
}
}
int
gsl_sf_airy_Bi_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x < -1.0) {
gsl_sf_result mod;
gsl_sf_result theta;
gsl_sf_result sin_result;
int stat_mp = airy_mod_phase(x, mode, &mod, &theta);
int stat_sin = gsl_sf_sin_err_e(theta.val, theta.err, &sin_result);
result->val = mod.val * sin_result.val;
result->err = fabs(mod.val * sin_result.err) + fabs(sin_result.val * mod.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_mp, stat_sin);
}
else if(x < 1.0) {
const double z = x*x*x;
gsl_sf_result result_c0;
gsl_sf_result result_c1;
cheb_eval_mode_e(&bif_cs, z, mode, &result_c0);
cheb_eval_mode_e(&big_cs, z, mode, &result_c1);
result->val = 0.625 + result_c0.val + x*(0.4375 + result_c1.val);
result->err = result_c0.err + fabs(x * result_c1.err);
result->err += GSL_DBL_EPSILON * fabs(result->val);
if(x > 0.0) {
const double scale = exp(-2.0/3.0 * sqrt(z));
result->val *= scale;
result->err *= scale;
}
return GSL_SUCCESS;
}
else if(x <= 2.0) {
const double x3 = x*x*x;
const double z = (2.0*x3 - 9.0)/7.0;
const double s = exp(-2.0/3.0 * sqrt(x3));
gsl_sf_result result_c0;
gsl_sf_result result_c1;
cheb_eval_mode_e(&bif2_cs, z, mode, &result_c0);
cheb_eval_mode_e(&big2_cs, z, mode, &result_c1);
result->val = s * (1.125 + result_c0.val + x*(0.625 + result_c1.val));
result->err = s * (result_c0.err + fabs(x * result_c1.err));
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
return airy_bie(x, mode, result);
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_airy_Ai(const double x, gsl_mode_t mode)
{
EVAL_RESULT(gsl_sf_airy_Ai_e(x, mode, &result));
}
double gsl_sf_airy_Ai_scaled(const double x, gsl_mode_t mode)
{
EVAL_RESULT(gsl_sf_airy_Ai_scaled_e(x, mode, &result));
}
double gsl_sf_airy_Bi(const double x, gsl_mode_t mode)
{
EVAL_RESULT(gsl_sf_airy_Bi_e(x, mode, &result));
}
double gsl_sf_airy_Bi_scaled(const double x, gsl_mode_t mode)
{
EVAL_RESULT(gsl_sf_airy_Bi_scaled_e(x, mode, &result));
}
|