1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
|
/* specfunc/bessel.c
*
* Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
/* Miscellaneous support functions for Bessel function evaluations.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_airy.h>
#include <gsl/gsl_sf_elementary.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_trig.h>
#include "error.h"
#include "bessel_amp_phase.h"
#include "bessel_temme.h"
#include "bessel.h"
#define CubeRoot2_ 1.25992104989487316476721060728
/* Debye functions [Abramowitz+Stegun, 9.3.9-10] */
inline static double
debye_u1(const double * tpow)
{
return (3.0*tpow[1] - 5.0*tpow[3])/24.0;
}
inline static double
debye_u2(const double * tpow)
{
return (81.0*tpow[2] - 462.0*tpow[4] + 385.0*tpow[6])/1152.0;
}
inline
static double debye_u3(const double * tpow)
{
return (30375.0*tpow[3] - 369603.0*tpow[5] + 765765.0*tpow[7] - 425425.0*tpow[9])/414720.0;
}
inline
static double debye_u4(const double * tpow)
{
return (4465125.0*tpow[4] - 94121676.0*tpow[6] + 349922430.0*tpow[8] -
446185740.0*tpow[10] + 185910725.0*tpow[12])/39813120.0;
}
inline
static double debye_u5(const double * tpow)
{
return (1519035525.0*tpow[5] - 49286948607.0*tpow[7] +
284499769554.0*tpow[9] - 614135872350.0*tpow[11] +
566098157625.0*tpow[13] - 188699385875.0*tpow[15])/6688604160.0;
}
#if 0
inline
static double debye_u6(const double * tpow)
{
return (2757049477875.0*tpow[6] - 127577298354750.0*tpow[8] +
1050760774457901.0*tpow[10] - 3369032068261860.0*tpow[12] +
5104696716244125.0*tpow[14] - 3685299006138750.0*tpow[16] +
1023694168371875.0*tpow[18])/4815794995200.0;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_bessel_IJ_taylor_e(const double nu, const double x,
const int sign,
const int kmax,
const double threshold,
gsl_sf_result * result
)
{
/* CHECK_POINTER(result) */
if(nu < 0.0 || x < 0.0) {
DOMAIN_ERROR(result);
}
else if(x == 0.0) {
if(nu == 0.0) {
result->val = 1.0;
result->err = 0.0;
}
else {
result->val = 0.0;
result->err = 0.0;
}
return GSL_SUCCESS;
}
else {
gsl_sf_result prefactor; /* (x/2)^nu / Gamma(nu+1) */
gsl_sf_result sum;
int stat_pre;
int stat_sum;
int stat_mul;
if(nu == 0.0) {
prefactor.val = 1.0;
prefactor.err = 0.0;
stat_pre = GSL_SUCCESS;
}
else if(nu < INT_MAX-1) {
/* Separate the integer part and use
* y^nu / Gamma(nu+1) = y^N /N! y^f / (N+1)_f,
* to control the error.
*/
const int N = (int)floor(nu + 0.5);
const double f = nu - N;
gsl_sf_result poch_factor;
gsl_sf_result tc_factor;
const int stat_poch = gsl_sf_poch_e(N+1.0, f, &poch_factor);
const int stat_tc = gsl_sf_taylorcoeff_e(N, 0.5*x, &tc_factor);
const double p = pow(0.5*x,f);
prefactor.val = tc_factor.val * p / poch_factor.val;
prefactor.err = tc_factor.err * p / poch_factor.val;
prefactor.err += fabs(prefactor.val) / poch_factor.val * poch_factor.err;
prefactor.err += 2.0 * GSL_DBL_EPSILON * fabs(prefactor.val);
stat_pre = GSL_ERROR_SELECT_2(stat_tc, stat_poch);
}
else {
gsl_sf_result lg;
const int stat_lg = gsl_sf_lngamma_e(nu+1.0, &lg);
const double term1 = nu*log(0.5*x);
const double term2 = lg.val;
const double ln_pre = term1 - term2;
const double ln_pre_err = GSL_DBL_EPSILON * (fabs(term1)+fabs(term2)) + lg.err;
const int stat_ex = gsl_sf_exp_err_e(ln_pre, ln_pre_err, &prefactor);
stat_pre = GSL_ERROR_SELECT_2(stat_ex, stat_lg);
}
/* Evaluate the sum.
* [Abramowitz+Stegun, 9.1.10]
* [Abramowitz+Stegun, 9.6.7]
*/
{
const double y = sign * 0.25 * x*x;
double sumk = 1.0;
double term = 1.0;
int k;
for(k=1; k<=kmax; k++) {
term *= y/((nu+k)*k);
sumk += term;
if(fabs(term/sumk) < threshold) break;
}
sum.val = sumk;
sum.err = threshold * fabs(sumk);
stat_sum = ( k >= kmax ? GSL_EMAXITER : GSL_SUCCESS );
}
stat_mul = gsl_sf_multiply_err_e(prefactor.val, prefactor.err,
sum.val, sum.err,
result);
return GSL_ERROR_SELECT_3(stat_mul, stat_pre, stat_sum);
}
}
/* Hankel's Asymptotic Expansion - A&S 9.2.5
*
* x >> nu*nu+1
* error ~ O( ((nu*nu+1)/x)^4 )
*
* empirical error analysis:
* choose GSL_ROOT4_MACH_EPS * x > (nu*nu + 1)
*
* This is not especially useful. When the argument gets
* large enough for this to apply, the cos() and sin()
* start loosing digits. However, this seems inevitable
* for this particular method.
*
* Wed Jun 25 14:39:38 MDT 2003 [GJ]
* This function was inconsistent since the Q term did not
* go to relative order eps^2. That's why the error estimate
* originally given was screwy (it didn't make sense that the
* "empirical" error was coming out O(eps^3)).
* With Q to proper order, the error is O(eps^4).
*
* Sat Mar 15 05:16:18 GMT 2008 [BG]
* Extended to use additional terms in the series to gain
* higher accuracy.
*
*/
int
gsl_sf_bessel_Jnu_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
double mu = 4.0*nu*nu;
double chi = x - (0.5*nu + 0.25)*M_PI;
double P = 0.0;
double Q = 0.0;
double k = 0, t = 1;
int convP, convQ;
do
{
t *= (k == 0) ? 1 : -(mu - (2*k-1)*(2*k-1)) / (k * (8 * x));
convP = fabs(t) < GSL_DBL_EPSILON * fabs(P);
P += t;
k++;
t *= (mu - (2*k-1)*(2*k-1)) / (k * (8 * x));
convQ = fabs(t) < GSL_DBL_EPSILON * fabs(Q);
Q += t;
/* To preserve the consistency of the series we need to exit
when P and Q have the same number of terms */
if (convP && convQ && k > (nu / 2))
break;
k++;
}
while (k < 1000);
{
double pre = sqrt(2.0/(M_PI*x));
double c = cos(chi);
double s = sin(chi);
result->val = pre * (c*P - s*Q);
result->err = pre * GSL_DBL_EPSILON * (fabs(c*P) + fabs(s*Q) + fabs(t)) * (1 + fabs(x));
/* NB: final term accounts for phase error with large x */
}
return GSL_SUCCESS;
}
/* x >> nu*nu+1
*/
int
gsl_sf_bessel_Ynu_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
double ampl;
double theta;
double alpha = x;
double beta = -0.5*nu*M_PI;
int stat_a = gsl_sf_bessel_asymp_Mnu_e(nu, x, &l);
int stat_t = gsl_sf_bessel_asymp_thetanu_corr_e(nu, x, &theta);
double sin_alpha = sin(alpha);
double cos_alpha = cos(alpha);
double sin_chi = sin(beta + theta);
double cos_chi = cos(beta + theta);
double sin_term = sin_alpha * cos_chi + sin_chi * cos_alpha;
double sin_term_mag = fabs(sin_alpha * cos_chi) + fabs(sin_chi * cos_alpha);
result->val = ampl * sin_term;
result->err = fabs(ampl) * GSL_DBL_EPSILON * sin_term_mag;
result->err += fabs(result->val) * 2.0 * GSL_DBL_EPSILON;
if(fabs(alpha) > 1.0/GSL_DBL_EPSILON) {
result->err *= 0.5 * fabs(alpha);
}
else if(fabs(alpha) > 1.0/GSL_SQRT_DBL_EPSILON) {
result->err *= 256.0 * fabs(alpha) * GSL_SQRT_DBL_EPSILON;
}
return GSL_ERROR_SELECT_2(stat_t, stat_a);
}
/* x >> nu*nu+1
*/
int
gsl_sf_bessel_Inu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
double mu = 4.0*nu*nu;
double mum1 = mu-1.0;
double mum9 = mu-9.0;
double pre = 1.0/sqrt(2.0*M_PI*x);
double r = mu/x;
result->val = pre * (1.0 - mum1/(8.0*x) + mum1*mum9/(128.0*x*x));
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r);
return GSL_SUCCESS;
}
/* x >> nu*nu+1
*/
int
gsl_sf_bessel_Knu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
double mu = 4.0*nu*nu;
double mum1 = mu-1.0;
double mum9 = mu-9.0;
double pre = sqrt(M_PI/(2.0*x));
double r = nu/x;
result->val = pre * (1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x));
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r);
return GSL_SUCCESS;
}
/* nu -> Inf; uniform in x > 0 [Abramowitz+Stegun, 9.7.7]
*
* error:
* The error has the form u_N(t)/nu^N where 0 <= t <= 1.
* It is not hard to show that |u_N(t)| is small for such t.
* We have N=6 here, and |u_6(t)| < 0.025, so the error is clearly
* bounded by 0.025/nu^6. This gives the asymptotic bound on nu
* seen below as nu ~ 100. For general MACH_EPS it will be
* nu > 0.5 / MACH_EPS^(1/6)
* When t is small, the bound is even better because |u_N(t)| vanishes
* as t->0. In fact u_N(t) ~ C t^N as t->0, with C ~= 0.1.
* We write
* err_N <= min(0.025, C(1/(1+(x/nu)^2))^3) / nu^6
* therefore
* min(0.29/nu^2, 0.5/(nu^2+x^2)) < MACH_EPS^{1/3}
* and this is the general form.
*
* empirical error analysis, assuming 14 digit requirement:
* choose x > 50.000 nu ==> nu > 3
* choose x > 10.000 nu ==> nu > 15
* choose x > 2.000 nu ==> nu > 50
* choose x > 1.000 nu ==> nu > 75
* choose x > 0.500 nu ==> nu > 80
* choose x > 0.100 nu ==> nu > 83
*
* This makes sense. For x << nu, the error will be of the form u_N(1)/nu^N,
* since the polynomial term will be evaluated near t=1, so the bound
* on nu will become constant for small x. Furthermore, increasing x with
* nu fixed will decrease the error.
*/
int
gsl_sf_bessel_Inu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result)
{
int i;
double z = x/nu;
double root_term = hypot(1.0,z);
double pre = 1.0/sqrt(2.0*M_PI*nu * root_term);
double eta = root_term + log(z/(1.0+root_term));
double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(-z + eta) : -0.5*nu/z*(1.0 - 1.0/(12.0*z*z)) );
gsl_sf_result ex_result;
int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result);
if(stat_ex == GSL_SUCCESS) {
double t = 1.0/root_term;
double sum;
double tpow[16];
tpow[0] = 1.0;
for(i=1; i<16; i++) tpow[i] = t * tpow[i-1];
sum = 1.0 + debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) + debye_u3(tpow)/(nu*nu*nu)
+ debye_u4(tpow)/(nu*nu*nu*nu) + debye_u5(tpow)/(nu*nu*nu*nu*nu);
result->val = pre * ex_result.val * sum;
result->err = pre * ex_result.val / (nu*nu*nu*nu*nu*nu);
result->err += pre * ex_result.err * fabs(sum);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
result->val = 0.0;
result->err = 0.0;
return stat_ex;
}
}
/* nu -> Inf; uniform in x > 0 [Abramowitz+Stegun, 9.7.8]
*
* error:
* identical to that above for Inu_scaled
*/
int
gsl_sf_bessel_Knu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result)
{
int i;
double z = x/nu;
double root_term = hypot(1.0,z);
double pre = sqrt(M_PI/(2.0*nu*root_term));
double eta = root_term + log(z/(1.0+root_term));
double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(z - eta) : 0.5*nu/z*(1.0 + 1.0/(12.0*z*z)) );
gsl_sf_result ex_result;
int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result);
if(stat_ex == GSL_SUCCESS) {
double t = 1.0/root_term;
double sum;
double tpow[16];
tpow[0] = 1.0;
for(i=1; i<16; i++) tpow[i] = t * tpow[i-1];
sum = 1.0 - debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) - debye_u3(tpow)/(nu*nu*nu)
+ debye_u4(tpow)/(nu*nu*nu*nu) - debye_u5(tpow)/(nu*nu*nu*nu*nu);
result->val = pre * ex_result.val * sum;
result->err = pre * ex_result.err * fabs(sum);
result->err += pre * ex_result.val / (nu*nu*nu*nu*nu*nu);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
result->val = 0.0;
result->err = 0.0;
return stat_ex;
}
}
/* Evaluate J_mu(x),J_{mu+1}(x) and Y_mu(x),Y_{mu+1}(x) for |mu| < 1/2
*/
int
gsl_sf_bessel_JY_mu_restricted(const double mu, const double x,
gsl_sf_result * Jmu, gsl_sf_result * Jmup1,
gsl_sf_result * Ymu, gsl_sf_result * Ymup1)
{
/* CHECK_POINTER(Jmu) */
/* CHECK_POINTER(Jmup1) */
/* CHECK_POINTER(Ymu) */
/* CHECK_POINTER(Ymup1) */
if(x < 0.0 || fabs(mu) > 0.5) {
Jmu->val = 0.0;
Jmu->err = 0.0;
Jmup1->val = 0.0;
Jmup1->err = 0.0;
Ymu->val = 0.0;
Ymu->err = 0.0;
Ymup1->val = 0.0;
Ymup1->err = 0.0;
GSL_ERROR ("error", GSL_EDOM);
}
else if(x == 0.0) {
if(mu == 0.0) {
Jmu->val = 1.0;
Jmu->err = 0.0;
}
else {
Jmu->val = 0.0;
Jmu->err = 0.0;
}
Jmup1->val = 0.0;
Jmup1->err = 0.0;
Ymu->val = 0.0;
Ymu->err = 0.0;
Ymup1->val = 0.0;
Ymup1->err = 0.0;
GSL_ERROR ("error", GSL_EDOM);
}
else {
int stat_Y;
int stat_J;
if(x < 2.0) {
/* Use Taylor series for J and the Temme series for Y.
* The Taylor series for J requires nu > 0, so we shift
* up one and use the recursion relation to get Jmu, in
* case mu < 0.
*/
gsl_sf_result Jmup2;
int stat_J1 = gsl_sf_bessel_IJ_taylor_e(mu+1.0, x, -1, 100, GSL_DBL_EPSILON, Jmup1);
int stat_J2 = gsl_sf_bessel_IJ_taylor_e(mu+2.0, x, -1, 100, GSL_DBL_EPSILON, &Jmup2);
double c = 2.0*(mu+1.0)/x;
Jmu->val = c * Jmup1->val - Jmup2.val;
Jmu->err = c * Jmup1->err + Jmup2.err;
Jmu->err += 2.0 * GSL_DBL_EPSILON * fabs(Jmu->val);
stat_J = GSL_ERROR_SELECT_2(stat_J1, stat_J2);
stat_Y = gsl_sf_bessel_Y_temme(mu, x, Ymu, Ymup1);
return GSL_ERROR_SELECT_2(stat_J, stat_Y);
}
else if(x < 1000.0) {
double P, Q;
double J_ratio;
double J_sgn;
const int stat_CF1 = gsl_sf_bessel_J_CF1(mu, x, &J_ratio, &J_sgn);
const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q);
double Jprime_J_ratio = mu/x - J_ratio;
double gamma = (P - Jprime_J_ratio)/Q;
Jmu->val = J_sgn * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jprime_J_ratio)));
Jmu->err = 4.0 * GSL_DBL_EPSILON * fabs(Jmu->val);
Jmup1->val = J_ratio * Jmu->val;
Jmup1->err = fabs(J_ratio) * Jmu->err;
Ymu->val = gamma * Jmu->val;
Ymu->err = fabs(gamma) * Jmu->err;
Ymup1->val = Ymu->val * (mu/x - P - Q/gamma);
Ymup1->err = Ymu->err * fabs(mu/x - P - Q/gamma) + 4.0*GSL_DBL_EPSILON*fabs(Ymup1->val);
return GSL_ERROR_SELECT_2(stat_CF1, stat_CF2);
}
else {
/* Use asymptotics for large argument.
*/
const int stat_J0 = gsl_sf_bessel_Jnu_asympx_e(mu, x, Jmu);
const int stat_J1 = gsl_sf_bessel_Jnu_asympx_e(mu+1.0, x, Jmup1);
const int stat_Y0 = gsl_sf_bessel_Ynu_asympx_e(mu, x, Ymu);
const int stat_Y1 = gsl_sf_bessel_Ynu_asympx_e(mu+1.0, x, Ymup1);
stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1);
stat_Y = GSL_ERROR_SELECT_2(stat_Y0, stat_Y1);
return GSL_ERROR_SELECT_2(stat_J, stat_Y);
}
}
}
int
gsl_sf_bessel_J_CF1(const double nu, const double x,
double * ratio, double * sgn)
{
const double RECUR_BIG = GSL_SQRT_DBL_MAX;
const double RECUR_SMALL = GSL_SQRT_DBL_MIN;
const int maxiter = 10000;
int n = 1;
double Anm2 = 1.0;
double Bnm2 = 0.0;
double Anm1 = 0.0;
double Bnm1 = 1.0;
double a1 = x/(2.0*(nu+1.0));
double An = Anm1 + a1*Anm2;
double Bn = Bnm1 + a1*Bnm2;
double an;
double fn = An/Bn;
double dn = a1;
double s = 1.0;
while(n < maxiter) {
double old_fn;
double del;
n++;
Anm2 = Anm1;
Bnm2 = Bnm1;
Anm1 = An;
Bnm1 = Bn;
an = -x*x/(4.0*(nu+n-1.0)*(nu+n));
An = Anm1 + an*Anm2;
Bn = Bnm1 + an*Bnm2;
if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
An /= RECUR_BIG;
Bn /= RECUR_BIG;
Anm1 /= RECUR_BIG;
Bnm1 /= RECUR_BIG;
Anm2 /= RECUR_BIG;
} else if(fabs(An) < RECUR_SMALL || fabs(Bn) < RECUR_SMALL) {
An /= RECUR_SMALL;
Bn /= RECUR_SMALL;
Anm1 /= RECUR_SMALL;
Bnm1 /= RECUR_SMALL;
Anm2 /= RECUR_SMALL;
Bnm2 /= RECUR_SMALL;
}
old_fn = fn;
fn = An/Bn;
del = old_fn/fn;
dn = 1.0 / (2.0*(nu+n)/x - dn);
if(dn < 0.0) s = -s;
if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break;
}
/* FIXME: we should return an error term here as well, because the
error from this recurrence affects the overall error estimate. */
*ratio = fn;
*sgn = s;
if(n >= maxiter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
/* Evaluate the continued fraction CF1 for J_{nu+1}/J_nu
* using Gautschi (Euler) equivalent series.
* This exhibits an annoying problem because the
* a_k are not positive definite (in fact they are all negative).
* There are cases when rho_k blows up. Example: nu=1,x=4.
*/
#if 0
int
gsl_sf_bessel_J_CF1_ser(const double nu, const double x,
double * ratio, double * sgn)
{
const int maxk = 20000;
double tk = 1.0;
double sum = 1.0;
double rhok = 0.0;
double dk = 0.0;
double s = 1.0;
int k;
for(k=1; k<maxk; k++) {
double ak = -0.25 * (x/(nu+k)) * x/(nu+k+1.0);
rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok));
tk *= rhok;
sum += tk;
dk = 1.0 / (2.0/x - (nu+k-1.0)/(nu+k) * dk);
if(dk < 0.0) s = -s;
if(fabs(tk/sum) < GSL_DBL_EPSILON) break;
}
*ratio = x/(2.0*(nu+1.0)) * sum;
*sgn = s;
if(k == maxk)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
#endif
/* Evaluate the continued fraction CF1 for I_{nu+1}/I_nu
* using Gautschi (Euler) equivalent series.
*/
int
gsl_sf_bessel_I_CF1_ser(const double nu, const double x, double * ratio)
{
const int maxk = 20000;
double tk = 1.0;
double sum = 1.0;
double rhok = 0.0;
int k;
for(k=1; k<maxk; k++) {
double ak = 0.25 * (x/(nu+k)) * x/(nu+k+1.0);
rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok));
tk *= rhok;
sum += tk;
if(fabs(tk/sum) < GSL_DBL_EPSILON) break;
}
*ratio = x/(2.0*(nu+1.0)) * sum;
if(k == maxk)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
int
gsl_sf_bessel_JY_steed_CF2(const double nu, const double x,
double * P, double * Q)
{
const int max_iter = 10000;
const double SMALL = 1.0e-100;
int i = 1;
double x_inv = 1.0/x;
double a = 0.25 - nu*nu;
double p = -0.5*x_inv;
double q = 1.0;
double br = 2.0*x;
double bi = 2.0;
double fact = a*x_inv/(p*p + q*q);
double cr = br + q*fact;
double ci = bi + p*fact;
double den = br*br + bi*bi;
double dr = br/den;
double di = -bi/den;
double dlr = cr*dr - ci*di;
double dli = cr*di + ci*dr;
double temp = p*dlr - q*dli;
q = p*dli + q*dlr;
p = temp;
for (i=2; i<=max_iter; i++) {
a += 2*(i-1);
bi += 2.0;
dr = a*dr + br;
di = a*di + bi;
if(fabs(dr)+fabs(di) < SMALL) dr = SMALL;
fact = a/(cr*cr+ci*ci);
cr = br + cr*fact;
ci = bi - ci*fact;
if(fabs(cr)+fabs(ci) < SMALL) cr = SMALL;
den = dr*dr + di*di;
dr /= den;
di /= -den;
dlr = cr*dr - ci*di;
dli = cr*di + ci*dr;
temp = p*dlr - q*dli;
q = p*dli + q*dlr;
p = temp;
if(fabs(dlr-1.0)+fabs(dli) < GSL_DBL_EPSILON) break;
}
*P = p;
*Q = q;
if(i == max_iter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
/* Evaluate continued fraction CF2, using Thompson-Barnett-Temme method,
* to obtain values of exp(x)*K_nu and exp(x)*K_{nu+1}.
*
* This is unstable for small x; x > 2 is a good cutoff.
* Also requires |nu| < 1/2.
*/
int
gsl_sf_bessel_K_scaled_steed_temme_CF2(const double nu, const double x,
double * K_nu, double * K_nup1,
double * Kp_nu)
{
const int maxiter = 10000;
int i = 1;
double bi = 2.0*(1.0 + x);
double di = 1.0/bi;
double delhi = di;
double hi = di;
double qi = 0.0;
double qip1 = 1.0;
double ai = -(0.25 - nu*nu);
double a1 = ai;
double ci = -ai;
double Qi = -ai;
double s = 1.0 + Qi*delhi;
for(i=2; i<=maxiter; i++) {
double dels;
double tmp;
ai -= 2.0*(i-1);
ci = -ai*ci/i;
tmp = (qi - bi*qip1)/ai;
qi = qip1;
qip1 = tmp;
Qi += ci*qip1;
bi += 2.0;
di = 1.0/(bi + ai*di);
delhi = (bi*di - 1.0) * delhi;
hi += delhi;
dels = Qi*delhi;
s += dels;
if(fabs(dels/s) < GSL_DBL_EPSILON) break;
}
hi *= -a1;
*K_nu = sqrt(M_PI/(2.0*x)) / s;
*K_nup1 = *K_nu * (nu + x + 0.5 - hi)/x;
*Kp_nu = - *K_nup1 + nu/x * *K_nu;
if(i == maxiter)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
int gsl_sf_bessel_cos_pi4_e(double y, double eps, gsl_sf_result * result)
{
const double sy = sin(y);
const double cy = cos(y);
const double s = sy + cy;
const double d = sy - cy;
const double abs_sum = fabs(cy) + fabs(sy);
double seps;
double ceps;
if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) {
const double e2 = eps*eps;
seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0));
ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0);
}
else {
seps = sin(eps);
ceps = cos(eps);
}
result->val = (ceps * s - seps * d)/ M_SQRT2;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2;
/* Try to account for error in evaluation of sin(y), cos(y).
* This is a little sticky because we don't really know
* how the library routines are doing their argument reduction.
* However, we will make a reasonable guess.
* FIXME ?
*/
if(y > 1.0/GSL_DBL_EPSILON) {
result->err *= 0.5 * y;
}
else if(y > 1.0/GSL_SQRT_DBL_EPSILON) {
result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON;
}
return GSL_SUCCESS;
}
int gsl_sf_bessel_sin_pi4_e(double y, double eps, gsl_sf_result * result)
{
const double sy = sin(y);
const double cy = cos(y);
const double s = sy + cy;
const double d = sy - cy;
const double abs_sum = fabs(cy) + fabs(sy);
double seps;
double ceps;
if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) {
const double e2 = eps*eps;
seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0));
ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0);
}
else {
seps = sin(eps);
ceps = cos(eps);
}
result->val = (ceps * d + seps * s)/ M_SQRT2;
result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2;
/* Try to account for error in evaluation of sin(y), cos(y).
* See above.
* FIXME ?
*/
if(y > 1.0/GSL_DBL_EPSILON) {
result->err *= 0.5 * y;
}
else if(y > 1.0/GSL_SQRT_DBL_EPSILON) {
result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON;
}
return GSL_SUCCESS;
}
/************************************************************************
* *
Asymptotic approximations 8.11.5, 8.12.5, and 8.42.7 from
G.N.Watson, A Treatise on the Theory of Bessel Functions,
2nd Edition (Cambridge University Press, 1944).
Higher terms in expansion for x near l given by
Airey in Phil. Mag. 31, 520 (1916).
This approximation is accurate to near 0.1% at the boundaries
between the asymptotic regions; well away from the boundaries
the accuracy is better than 10^{-5}.
* *
************************************************************************/
#if 0
double besselJ_meissel(double nu, double x)
{
double beta = pow(nu, 0.325);
double result;
/* Fitted matching points. */
double llimit = 1.1 * beta;
double ulimit = 1.3 * beta;
double nu2 = nu * nu;
if (nu < 5. && x < 1.)
{
/* Small argument and order. Use a Taylor expansion. */
int k;
double xo2 = 0.5 * x;
double gamfactor = pow(nu,nu) * exp(-nu) * sqrt(nu * 2. * M_PI)
* (1. + 1./(12.*nu) + 1./(288.*nu*nu));
double prefactor = pow(xo2, nu) / gamfactor;
double C[5];
C[0] = 1.;
C[1] = -C[0] / (nu+1.);
C[2] = -C[1] / (2.*(nu+2.));
C[3] = -C[2] / (3.*(nu+3.));
C[4] = -C[3] / (4.*(nu+4.));
result = 0.;
for(k=0; k<5; k++)
result += C[k] * pow(xo2, 2.*k);
result *= prefactor;
}
else if(x < nu - llimit)
{
/* Small x region: x << l. */
double z = x / nu;
double z2 = z*z;
double rtomz2 = sqrt(1.-z2);
double omz2_2 = (1.-z2)*(1.-z2);
/* Calculate Meissel exponent. */
double term1 = 1./(24.*nu) * ((2.+3.*z2)/((1.-z2)*rtomz2) -2.);
double term2 = - z2*(4. + z2)/(16.*nu2*(1.-z2)*omz2_2);
double V_nu = term1 + term2;
/* Calculate the harmless prefactor. */
double sterlingsum = 1. + 1./(12.*nu) + 1./(288*nu2);
double harmless = 1. / (sqrt(rtomz2*2.*M_PI*nu) * sterlingsum);
/* Calculate the logarithm of the nu dependent prefactor. */
double ln_nupre = rtomz2 + log(z) - log(1. + rtomz2);
result = harmless * exp(nu*ln_nupre - V_nu);
}
else if(x < nu + ulimit)
{
/* Intermediate region 1: x near nu. */
double eps = 1.-nu/x;
double eps_x = eps * x;
double eps_x_2 = eps_x * eps_x;
double xo6 = x/6.;
double B[6];
static double gam[6] = {2.67894, 1.35412, 1., 0.89298, 0.902745, 1.};
static double sf[6] = {0.866025, 0.866025, 0., -0.866025, -0.866025, 0.};
/* Some terms are identically zero, because sf[] can be zero.
* Some terms do not appear in the result.
*/
B[0] = 1.;
B[1] = eps_x;
/* B[2] = 0.5 * eps_x_2 - 1./20.; */
B[3] = eps_x * (eps_x_2/6. - 1./15.);
B[4] = eps_x_2 * (eps_x_2 - 1.)/24. + 1./280.;
/* B[5] = eps_x * (eps_x_2*(0.5*eps_x_2 - 1.)/60. + 43./8400.); */
result = B[0] * gam[0] * sf[0] / pow(xo6, 1./3.);
result += B[1] * gam[1] * sf[1] / pow(xo6, 2./3.);
result += B[3] * gam[3] * sf[3] / pow(xo6, 4./3.);
result += B[4] * gam[4] * sf[4] / pow(xo6, 5./3.);
result /= (3.*M_PI);
}
else
{
/* Region of very large argument. Use expansion
* for x>>l, and we need not be very exacting.
*/
double secb = x/nu;
double sec2b= secb*secb;
double cotb = 1./sqrt(sec2b-1.); /* cotb=cot(beta) */
double beta = acos(nu/x);
double trigarg = nu/cotb - nu*beta - 0.25 * M_PI;
double cot3b = cotb * cotb * cotb;
double cot6b = cot3b * cot3b;
double sum1, sum2, expterm, prefactor, trigcos;
sum1 = 2.0 + 3.0 * sec2b;
trigarg -= sum1 * cot3b / (24.0 * nu);
trigcos = cos(trigarg);
sum2 = 4.0 + sec2b;
expterm = sum2 * sec2b * cot6b / (16.0 * nu2);
expterm = exp(-expterm);
prefactor = sqrt(2. * cotb / (nu * M_PI));
result = prefactor * expterm * trigcos;
}
return result;
}
#endif
|