1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/* specfunc/bessel_Kn.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_bessel.h>
#include "error.h"
#include "bessel.h"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/* [Abramowitz+Stegun, 9.6.11]
* assumes n >= 1
*/
static
int
bessel_Kn_scaled_small_x(const int n, const double x, gsl_sf_result * result)
{
int k;
double y = 0.25 * x * x;
double ln_x_2 = log(0.5*x);
double ex = exp(x);
gsl_sf_result ln_nm1_fact;
double k_term;
double term1, sum1, ln_pre1;
double term2, sum2, pre2;
gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact);
ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val;
if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW);
sum1 = 1.0;
k_term = 1.0;
for(k=1; k<=n-1; k++) {
k_term *= -y/(k * (n-k));
sum1 += k_term;
}
term1 = 0.5 * exp(ln_pre1) * sum1;
pre2 = 0.5 * exp(n*ln_x_2);
if(pre2 > 0.0) {
const int KMAX = 20;
gsl_sf_result psi_n;
gsl_sf_result npk_fact;
double yk = 1.0;
double k_fact = 1.0;
double psi_kp1 = -M_EULER;
double psi_npkp1;
gsl_sf_psi_int_e(n, &psi_n);
gsl_sf_fact_e((unsigned int)n, &npk_fact);
psi_npkp1 = psi_n.val + 1.0/n;
sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val;
for(k=1; k<KMAX; k++) {
psi_kp1 += 1.0/k;
psi_npkp1 += 1.0/(n+k);
k_fact *= k;
npk_fact.val *= n+k;
yk *= y;
k_term = yk*(psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/(k_fact*npk_fact.val);
sum2 += k_term;
}
term2 = ( GSL_IS_ODD(n) ? -1.0 : 1.0 ) * pre2 * sum2;
}
else {
term2 = 0.0;
}
result->val = ex * (term1 + term2);
result->err = ex * GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int gsl_sf_bessel_Kn_scaled_e(int n, const double x, gsl_sf_result * result)
{
n = abs(n); /* K(-n, z) = K(n, z) */
/* CHECK_POINTER(result) */
if(x <= 0.0) {
DOMAIN_ERROR(result);
}
else if(n == 0) {
return gsl_sf_bessel_K0_scaled_e(x, result);
}
else if(n == 1) {
return gsl_sf_bessel_K1_scaled_e(x, result);
}
else if(x <= 5.0) {
return bessel_Kn_scaled_small_x(n, x, result);
}
else if(GSL_ROOT3_DBL_EPSILON * x > 0.25 * (n*n + 1)) {
return gsl_sf_bessel_Knu_scaled_asympx_e((double)n, x, result);
}
else if(GSL_MIN(0.29/(n*n), 0.5/(n*n + x*x)) < GSL_ROOT3_DBL_EPSILON) {
return gsl_sf_bessel_Knu_scaled_asymp_unif_e((double)n, x, result);
}
else {
/* Upward recurrence. [Gradshteyn + Ryzhik, 8.471.1] */
double two_over_x = 2.0/x;
gsl_sf_result r_b_jm1;
gsl_sf_result r_b_j;
int stat_0 = gsl_sf_bessel_K0_scaled_e(x, &r_b_jm1);
int stat_1 = gsl_sf_bessel_K1_scaled_e(x, &r_b_j);
double b_jm1 = r_b_jm1.val;
double b_j = r_b_j.val;
double b_jp1;
int j;
for(j=1; j<n; j++) {
b_jp1 = b_jm1 + j * two_over_x * b_j;
b_jm1 = b_j;
b_j = b_jp1;
}
result->val = b_j;
result->err = n * (fabs(b_j) * (fabs(r_b_jm1.err/r_b_jm1.val) + fabs(r_b_j.err/r_b_j.val)));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_0, stat_1);
}
}
int gsl_sf_bessel_Kn_e(const int n, const double x, gsl_sf_result * result)
{
const int status = gsl_sf_bessel_Kn_scaled_e(n, x, result);
const double ex = exp(-x);
result->val *= ex;
result->err *= ex;
result->err += x * GSL_DBL_EPSILON * fabs(result->val);
return status;
}
int gsl_sf_bessel_Kn_scaled_array(const int nmin, const int nmax, const double x, double * result_array)
{
/* CHECK_POINTER(result_array) */
if(nmin < 0 || nmax < nmin || x <= 0.0) {
int j;
for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0;
GSL_ERROR ("domain error", GSL_EDOM);
}
else if(nmax == 0) {
gsl_sf_result b;
int stat = gsl_sf_bessel_K0_scaled_e(x, &b);
result_array[0] = b.val;
return stat;
}
else {
double two_over_x = 2.0/x;
gsl_sf_result r_Knm1;
gsl_sf_result r_Kn;
int stat_0 = gsl_sf_bessel_Kn_scaled_e(nmin, x, &r_Knm1);
int stat_1 = gsl_sf_bessel_Kn_scaled_e(nmin+1, x, &r_Kn);
int stat = GSL_ERROR_SELECT_2(stat_0, stat_1);
double Knp1;
double Kn = r_Kn.val;
double Knm1 = r_Knm1.val;
int n;
for(n=nmin+1; n<=nmax+1; n++) {
if(Knm1 < GSL_DBL_MAX) {
result_array[n-1-nmin] = Knm1;
Knp1 = Knm1 + n * two_over_x * Kn;
Knm1 = Kn;
Kn = Knp1;
}
else {
/* Overflow. Set the rest of the elements to
* zero and bug out.
* FIXME: Note: this relies on the convention
* that the test x < DBL_MIN fails for x not
* a number. This may be only an IEEE convention,
* so the portability is unclear.
*/
int j;
for(j=n; j<=nmax+1; j++) result_array[j-1-nmin] = 0.0;
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
}
return stat;
}
}
int
gsl_sf_bessel_Kn_array(const int nmin, const int nmax, const double x, double * result_array)
{
int status = gsl_sf_bessel_Kn_scaled_array(nmin, nmax, x, result_array);
double ex = exp(-x);
int i;
for(i=0; i<=nmax-nmin; i++) result_array[i] *= ex;
return status;
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_Kn_scaled(const int n, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Kn_scaled_e(n, x, &result));
}
double gsl_sf_bessel_Kn(const int n, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Kn_e(n, x, &result));
}
|