1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/* specfunc/bessel_Knu.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_bessel.h>
#include "error.h"
#include "bessel.h"
#include "bessel_temme.h"
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_bessel_Knu_scaled_e(const double nu, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0 || nu < 0.0) {
DOMAIN_ERROR(result);
}
else {
gsl_sf_result_e10 result_e10;
int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &result_e10);
int status2 = gsl_sf_result_smash_e(&result_e10, result);
return GSL_ERROR_SELECT_2(status, status2);
}
}
int
gsl_sf_bessel_Knu_scaled_e10_e(const double nu, const double x, gsl_sf_result_e10 * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0 || nu < 0.0) {
DOMAIN_ERROR_E10(result);
}
else {
int N = (int)(nu + 0.5);
double mu = nu - N; /* -1/2 <= mu <= 1/2 */
double K_mu, K_mup1, Kp_mu;
double K_nu, K_nup1, K_num1;
int n, e10 = 0;
if(x < 2.0) {
gsl_sf_bessel_K_scaled_temme(mu, x, &K_mu, &K_mup1, &Kp_mu);
}
else {
gsl_sf_bessel_K_scaled_steed_temme_CF2(mu, x, &K_mu, &K_mup1, &Kp_mu);
}
/* recurse forward to obtain K_num1, K_nu */
K_nu = K_mu;
K_nup1 = K_mup1;
for(n=0; n<N; n++) {
K_num1 = K_nu;
K_nu = K_nup1;
/* rescale the recurrence to avoid overflow */
if (fabs(K_nu) > GSL_SQRT_DBL_MAX) {
double p = floor(log(fabs(K_nu))/M_LN10);
double factor = pow(10.0, p);
K_num1 /= factor;
K_nu /= factor;
e10 += p;
};
K_nup1 = 2.0*(mu+n+1)/x * K_nu + K_num1;
}
result->val = K_nu;
result->err = 2.0 * GSL_DBL_EPSILON * (N + 4.0) * fabs(result->val);
result->e10 = e10;
return GSL_SUCCESS;
}
}
int
gsl_sf_bessel_Knu_e(const double nu, const double x, gsl_sf_result * result)
{
gsl_sf_result b;
int stat_K = gsl_sf_bessel_Knu_scaled_e(nu, x, &b);
int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0, b.val, b.err, result);
return GSL_ERROR_SELECT_2(stat_e, stat_K);
}
int
gsl_sf_bessel_lnKnu_e(const double nu, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0 || nu < 0.0) {
DOMAIN_ERROR(result);
}
else if(nu == 0.0) {
gsl_sf_result K_scaled;
/* This cannot underflow, and
* it will not throw GSL_EDOM
* since that is already checked.
*/
gsl_sf_bessel_K0_scaled_e(x, &K_scaled);
result->val = -x + log(fabs(K_scaled.val));
result->err = GSL_DBL_EPSILON * fabs(x) + fabs(K_scaled.err/K_scaled.val);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x < 2.0 && nu > 1.0) {
/* Make use of the inequality
* Knu(x) <= 1/2 (2/x)^nu Gamma(nu),
* which follows from the integral representation
* [Abramowitz+Stegun, 9.6.23 (2)]. With this
* we decide whether or not there is an overflow
* problem because x is small.
*/
double ln_bound;
gsl_sf_result lg_nu;
gsl_sf_lngamma_e(nu, &lg_nu);
ln_bound = -M_LN2 - nu*log(0.5*x) + lg_nu.val;
if(ln_bound > GSL_LOG_DBL_MAX - 20.0) {
/* x must be very small or nu very large (or both).
*/
double xi = 0.25*x*x;
double sum = 1.0 - xi/(nu-1.0);
if(nu > 2.0) sum += (xi/(nu-1.0)) * (xi/(nu-2.0));
result->val = ln_bound + log(sum);
result->err = lg_nu.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/* can drop-through here */
}
{
/* We passed the above tests, so no problem.
* Evaluate as usual. Note the possible drop-through
* in the above code!
*/
gsl_sf_result_e10 K_scaled;
int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &K_scaled);
result->val = -x + log(fabs(K_scaled.val)) + K_scaled.e10 * M_LN10;
result->err = GSL_DBL_EPSILON * fabs(x) + fabs(K_scaled.err/K_scaled.val);
result->err += GSL_DBL_EPSILON * fabs(result->val);
return status;
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_Knu_scaled(const double nu, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Knu_scaled_e(nu, x, &result));
}
double gsl_sf_bessel_Knu(const double nu, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Knu_e(nu, x, &result));
}
double gsl_sf_bessel_lnKnu(const double nu, const double x)
{
EVAL_RESULT(gsl_sf_bessel_lnKnu_e(nu, x, &result));
}
|