1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* specfunc/bessel_Yn.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_bessel.h>
#include "error.h"
#include "bessel.h"
#include "bessel_amp_phase.h"
#include "bessel_olver.h"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/* assumes n >= 1 */
static int bessel_Yn_small_x(const int n, const double x, gsl_sf_result * result)
{
int k;
double y = 0.25 * x * x;
double ln_x_2 = log(0.5*x);
gsl_sf_result ln_nm1_fact;
double k_term;
double term1, sum1, ln_pre1;
double term2, sum2, pre2;
gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact);
ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val;
if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW);
sum1 = 1.0;
k_term = 1.0;
for(k=1; k<=n-1; k++) {
k_term *= y/(k * (n-k));
sum1 += k_term;
}
term1 = -exp(ln_pre1) * sum1 / M_PI;
pre2 = -exp(n*ln_x_2) / M_PI;
if(fabs(pre2) > 0.0) {
const int KMAX = 20;
gsl_sf_result psi_n;
gsl_sf_result npk_fact;
double yk = 1.0;
double k_fact = 1.0;
double psi_kp1 = -M_EULER;
double psi_npkp1;
gsl_sf_psi_int_e(n, &psi_n);
gsl_sf_fact_e((unsigned int)n, &npk_fact);
psi_npkp1 = psi_n.val + 1.0/n;
sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val;
for(k=1; k<KMAX; k++) {
psi_kp1 += 1./k;
psi_npkp1 += 1./(n+k);
k_fact *= k;
npk_fact.val *= n+k;
yk *= -y;
k_term = yk*(psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/(k_fact*npk_fact.val);
sum2 += k_term;
}
term2 = pre2 * sum2;
}
else {
term2 = 0.0;
}
result->val = term1 + term2;
result->err = GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_bessel_Yn_e(int n, const double x, gsl_sf_result * result)
{
int sign = 1;
if(n < 0) {
/* reduce to case n >= 0 */
n = -n;
if(GSL_IS_ODD(n)) sign = -1;
}
/* CHECK_POINTER(result) */
if(n == 0) {
int status = gsl_sf_bessel_Y0_e(x, result);
result->val *= sign;
return status;
}
else if(n == 1) {
int status = gsl_sf_bessel_Y1_e(x, result);
result->val *= sign;
return status;
}
else {
if(x <= 0.0) {
DOMAIN_ERROR(result);
}
if(x < 5.0) {
int status = bessel_Yn_small_x(n, x, result);
result->val *= sign;
return status;
}
else if(GSL_ROOT3_DBL_EPSILON * x > (n*n + 1.0)) {
int status = gsl_sf_bessel_Ynu_asympx_e((double)n, x, result);
result->val *= sign;
return status;
}
else if(n > 50) {
int status = gsl_sf_bessel_Ynu_asymp_Olver_e((double)n, x, result);
result->val *= sign;
return status;
}
else {
double two_over_x = 2.0/x;
gsl_sf_result r_by;
gsl_sf_result r_bym;
int stat_1 = gsl_sf_bessel_Y1_e(x, &r_by);
int stat_0 = gsl_sf_bessel_Y0_e(x, &r_bym);
double bym = r_bym.val;
double by = r_by.val;
double byp;
int j;
for(j=1; j<n; j++) {
byp = j*two_over_x*by - bym;
bym = by;
by = byp;
}
result->val = sign * by;
result->err = fabs(result->val) * (fabs(r_by.err/r_by.val) + fabs(r_bym.err/r_bym.val));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_1, stat_0);
}
}
}
int
gsl_sf_bessel_Yn_array(const int nmin, const int nmax, const double x, double * result_array)
{
/* CHECK_POINTER(result_array) */
if(nmin < 0 || nmax < nmin || x <= 0.0) {
int j;
for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0;
GSL_ERROR ("error", GSL_EDOM);
}
else {
gsl_sf_result r_Ynm1;
gsl_sf_result r_Yn;
int stat_nm1 = gsl_sf_bessel_Yn_e(nmin, x, &r_Ynm1);
int stat_n = gsl_sf_bessel_Yn_e(nmin+1, x, &r_Yn);
double Ynp1;
double Yn = r_Yn.val;
double Ynm1 = r_Ynm1.val;
int n;
int stat = GSL_ERROR_SELECT_2(stat_nm1, stat_n);
if(stat == GSL_SUCCESS) {
for(n=nmin+1; n<=nmax+1; n++) {
result_array[n-nmin-1] = Ynm1;
Ynp1 = -Ynm1 + 2.0*n/x * Yn;
Ynm1 = Yn;
Yn = Ynp1;
}
}
else {
for(n=nmin; n<=nmax; n++) {
result_array[n-nmin] = 0.0;
}
}
return stat;
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_Yn(const int n, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Yn_e(n, x, &result));
}
|